• Title/Summary/Keyword: Air-cycle refrigeration

Search Result 344, Processing Time 0.031 seconds

Performance Characteristics of Air-Cooled Heat Pump System using Hydrocarbon Refrigerants According to Variation of Outdoor Temperature (실외 온도 변화에 따른 HC계 공랭식 히트펌프 시스템의 성능 특성)

  • Jun Chul-Ho;Lee Ho-Saeng;Kim Jae-Dol;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.218-224
    • /
    • 2006
  • The performance of an air to water vapor compression heat pump has been investigated experimentally. The main purpose of this study was to study the possibilities of using hydrocarbon refrigerants as a working fluid to replace R-22 for vapor compression heat pumps. Pure R-22 and R-290, R-600a, R-1270 were considered as working fluids. The performance of the system was characterized by compression shaft work, refrigeration capacity, pressure ratio, discharge temperature and COP. The experimental apparatus has basic parts of cycle that uses the air as a heat source. The experimental results show that refrigeration capacity of HC refrigerants is same or higher than that of R-22. On the other hand, compression shaft work of HC refrigerants is lower than that of R-22. Compression shaft work is lower than that of R-22. Come to the conclusion that, it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Simulation of the small Refrigeration Cycle as shape change of the Non-Adiabatic Capillary Tube (비단열 모세관의 형상 변경에 따른 소형 냉동 사이클 성능 해석)

  • Nam, Ki-Won;Yi, Dae-Yong;Park, Sang-Goo;Jeong, Ji-Hawn;Kim, Lyun-Su
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.550-555
    • /
    • 2009
  • The present simulation focuses on the effect of the shape of capillary tube-suction line heat exchangers(SLHX), The results in the three cases of the SLHX types show that both of the location and length of heat exchange section influence the coefficient of performance(COP) and cooling capacity. Simulation shows the COP may be improved by 4.6% and the cooling capacity may be improved by 13.6% in the Lateral type.

  • PDF

Performance Test of a R134a Centrifugal Water Chiller (R134a용 터보냉동기의 성능시험)

  • 이현구;윤필현;김춘동;이용덕;정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.333-340
    • /
    • 2001
  • A centrifugal water chiller using alternative refrigerant R134a have been developed. The prototype was designed to have refrigeration capacity of 300RT. Its compressor employs a single high-speed impeller, airfoil diffuser and collector. Newly developed enhanced tubes were installed in the evaporator and the condenser to reduce the required head for the compressor. Off-design characteristics at various conditions, performance test of the compressor and analysis of the refrigeration cycle were performed. So the probability of use in part load condition was checked and the direction for revision was suggested.

  • PDF

Simulation of a Polymer-Water Adsorption Refrigerator using Plate-Type Adsorption Heat Exchangers (판형 흡착열교환기를 사용한 폴리머-물 흡착식 냉동기의 성능예측)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • A hydroscopic polymer is used as the adsorbent in an adsorption refrigeration system. A pair of plate-type heat exchangers, thinly coated with the polymer, is simulated using a two-dimensional transient model to predict performance of the system. It is predicted that the system would yield 0.57 kW SCP and 0.47 COP at $80^{\circ}C$ heating and $30^{\circ}C$ cooling temperatures. In comparison with a conventional silica gel-water system, the COP is comparable but SCP is about three times larger. The slow mass diffusion rate of the polymer should be improved for better performance.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Experimental Study on the Cooling Performance Improvement of a Two-stage Compression $CO_2$ Cycle (2단압축 이산화탄소 사이클의 냉방성능 향상 특성에 대한 실험적 연구)

  • Cho Hong-Hyun;Lee Ho-Seong;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.835-841
    • /
    • 2006
  • A $CO_2$ system using the two-stage compression cycle was tested by varying $1^{st}-2^{nd}$ compressor frequencies in the cooling mode. To improve the cooling performance of the two-stage compression $CO_2$ cycle, the following cycle options were applied: a basic cycle, a cycle with an intercooler, a cycle with an IHX (internal heat exchanger), and a cycle with an intercooler and IHX. The cycle with the intercooler-IHX showed the highest cooling capacity improvement among the cycle options at all compressor frequencies. The cycle with the intercooler, the cycle with the IHX, and the cycle with the intercooler-IHX improved the cooling COP by 7, 12, and 15%, respectively, over the basic $CO_2$ cycle when the compressor frequencies for the first and second compressors were 50 Hz and 30 Hz, respectively. In addition, the applications of the selected cycle options enhanced system reliability.

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

Analysis on the Performance of a Transcritical Cycle Using Carbon Dioxide (이산화탄소를 이용한 초월임계사이클의 성능해석)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.471-479
    • /
    • 2003
  • A simulation on the performance of a transcritical $CO_2$ heat pump system is carried out to investigate its characteristics for various operating conditions. Cycle simulation models are established for a steady-state simulation and are verified by comparing experimental data. Based on correlations and methods available in the literature, the processes in individual components of the transcritical cycle are simulated to analyze the performance of $CO_2$ transcritical heat pump system. The simulation models are good enough to predict the performance of a $CO_2$ transcritical cycle. Simulation results are provided to show the relative effects when varying the size of internal heat exchanger and the discharge pressure of a compressor.

하이브리드 GAX 사이클 해석 : 성능향상 및 저온획득 응용

  • 강용태;조현철;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.923-929
    • /
    • 2001
  • The objectives of this paper are to develop an advanced GAX cycle named HGAX (Hybrid Generator Absorber heat eXchange) cycle, and to study the effect of key pa-rameters on the cycle performance and the evaporating temperature. Two different HGAX cycles are developed-Type A (Performance improvement) and Type B (Low temperature applications). A compressor is placed between the evaporator and the absorber, and the evaporator pressure and the absorber pressure are controlled according to its application purpose. It was found that the COP could be improved by 24% compared with the conventional GAX cycle and the evaporating temperature as low as -8$0^{\circ}C$ could be obtained from the HGAX cycle.

  • PDF