• Title/Summary/Keyword: Air-core

Search Result 744, Processing Time 0.027 seconds

A Numerical Study on the Structural Stability Optimization of the Core Components of a 17cc Automotive Compressor (17cc급 자동차용 압축기 핵심부품의 구조 안정성에 관한 수치적 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2021
  • Fuel economy has always been a major issue for the automotive industry due to environmental concerns. In particular, it is known that only 5-20% of the energy generated in a car that mainly uses an internal combustion engine is converted to increase fuel efficiency, many methods have been proposed. Among these methods, weight reduction is most commonly used because it is the simplest and cheapest. Weight is always the main reason for energy consumption, therefore, reducing weight is the best way to increase fuel efficiency while simultaneously saving on material costs. To reduce the weight of a compressor, material substitution is used. However, aluminum (a lighter metal substitute) is more fragile than steel, therefore, structural stability must be verified through testing. In this paper, we performed a 3D analysis to investigate whether aluminum can be used without compromising structural stability. Our investigation included static analysis and thermal analysis. As a result, we found that an aluminum swash plate can be safely applied on a shaft instead of steel; it reduces weight while maintaining stability that is equal to or better than steel.

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping;Zhang, Siwei;Wang, Wei;Li, Shuguang;Zhang, Song;Wang, Yujun
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

Study Case on the Log Cultivation of Phellinus baumii for It's High Quality and Large Quantity (고품질 다수확 원목 상황버섯 재배 경영사례 조사)

  • Suh, Gyu-Sun;Chang, Hyun-You;Kim, Soon-Geun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.153-167
    • /
    • 2008
  • High temperature and natural sun light are considered as the core conditions for high quality and large quantity of Phellinus baumii production. However still now on there has been a mistake of excessively cutting off the natural light by spreading the closing nets on the mushroom cultivating house. For an example there are many houses where the closing nets under the roofs be extended to cover the sides of the houses, which way prevents the mushrooms in the houses from receiving sufficient natural sun light and getting the temperature sufficiently to grow so that the quantity and quality of the produced mushrooms are lowered even though the mushrooms can grow in those conditions. In order to avoid this mistake, the closing nets must be placed on the roofs of the houses only without dropping them to cover the sides. Further more when the closing nets are placed triply at the beginning stage of Phellinus baumii's growth in the house, the nets restrain the internal temperature of the house going up and intercept the natural bright light flowing into the house so that the growing tardiness occur to the Phellinus baumii. Therefore the roof only must have been covered by the closing net for 65% cutting off the light until May, and then covered by double folded the net for June, triple folded the net for July and August, double folded the net for September, and the single net for October. When the ventilation in the house has been maintained until the house tightly balloon out through controling lifting force of internal air, the Phellinus baumii can grow well while the bed logs themselves aren't dried out. Marketing is also very much important as well as increasing quality and quantity of Phellinus baumii production.

Analysis on Po1y(lactic acid) Melt Spinning Dynamics (Poly(lactic acid) 용융방사공정의 동역학 해석)

  • Oh, Tae-Hwan;Kim, Seong-Cheol
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 2009
  • Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.

Analyzing Vertiport locations near Samsung Station for UAM activation : Focusing on the Metropolitan Area Demonstration Route (UAM 활성화를 위한 삼성역 부근의 버티포트 입지 분석 : 수도권 실증노선을 중심으로)

  • Jin Sick Kim;Byung Soo Gu;Moon Ju Nam;Kook Jin Jang;Hye Yeong Lee;Joo Yeoun Lee;Myoung Sug Chung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-78
    • /
    • 2023
  • This paper introduces urban air mobility (UAM) and the definition and types of vertiports required for UAM operations. It also examines domestic policy trends related to UAM and identifies UAM routes in Seoul currently planned by the government. To do so, we reviewed prior research on vertiports, analyzed new regulations from the European Aviation Safety Agency, and studied domestic vertiport specifications and deployment plans for UAM operations based on the size of the S-A1 airframe being developed by Hyundai, and applied them to Samsung Station, the core area of the demonstration routes. Next, using the 'Travel Time Savings Ratio', a method for evaluating transportation economics, we compared and analyzed the time taken by passenger vehicles and the time saved by using UAMs to derive a highly economical demonstration route. As a result, the Samsung Station↔Cheongnyangri Station section was found to be the most efficient. These findings are expected to be utilized for adjusting the distribution of UAMs when operating the demonstration route in the future.

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).

Combination Effect of Various Freezing and Thawing Techniques on Quality and Nutritional Attributes of Onions (다양한 냉·해동 방법에 따른 양파의 이화학적 특성 및 영양성분 변화)

  • Jung, You-Kyoung;Jang, Min-Young;Hwang, In-Guk;Yoo, Seon-Mi;Min, Sang-Gi;Jo, Yeon-Ji;Chun, Ji-Yeon;Choi, Mi-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1492-1503
    • /
    • 2015
  • This study evaluated the combination effect of various freezing and thawing techniques on the quality and nutritional aspects of onions. Onions were frozen by natural air convection freezing (NCF), air blast freezing (ABF), and liquid nitrogen freezing (LNF). Onions were frozen for 76 min by NCF, 9 min by ABF, and 9 min by LNF. The freezing treatment was stopped when the core temperature reached $-12^{\circ}C$ for NCF and ABF, and $-120^{\circ}C$ for LNF. Frozen samples were thawed through natural air convection thawing, running water thawing, sonication thawing (ST), or microwave thawing. The quality and nutritional aspects of frozen-thawed onions were evaluated by measuring thawing loss, pH, texture, water content, color, and SEM image. ST was found to cause the least loss in onion sample among the tested thawing methods, whereas the freezing methods did not cause any significant loss. In our experiment, thawing is found to be a more critical technique when compared to that of freezing. There were no clear quantifications or trends of pH and water content among different freezing and thawing techniques. The highest total color difference (${\Delta}E$) was observed in the NCF sample. For morphological observation, ABF gave the smallest ice crystal size, as well as minimum cell collapse. Loss of vitamin C, free sugar, and organic acid content was lower in the ABF and ST sample, when compared to other trials. In our study, we found that combination of ABF and ST could preserve the quality and nutritional aspects of frozen-thawed onions better than other methods.

A Study on the ROK Army Leadership for promoting Jointness (합동성 증진을 위한 한국군 리더십 연구)

  • Jin, Jae-Yeoul
    • Korea and Global Affairs
    • /
    • v.1 no.2
    • /
    • pp.209-242
    • /
    • 2017
  • The purpose of this study is to contribute to enhancing spiritual combat power as the core of intangible combat power in Korean armed forces through analyses and suggestions on Admiral Yi Sun-sin's leadership for four major sweeping victories based upon jointness which effectively integrates tangible and intangible combat power in armed forces to maximize the synergy of fighting power. As our armed forces has improved their military structure in the dimension of hardwares so as to enhance their efficiency, according to the results of analyzing the process to promote the jointness between our armed forces and our allied powers in the dimension of softwares supporting such hardware dimensions, it was necessary to innovate the system for reinforcing future-oriented spiritual combat power as well as all the tasks related to leadership as the core of intangible combat power jointly and harmoniously. In order to derive tasks about the leadership of Korean armed forces in the dimension of softwares which should be combined with military structural reform for strengthening spiritual combat power for national defense, this study selected research questions linked with jointness. That is, (1) what is the core of military leadership in Western advanced countries in the age of jointness? (2) What are the contemporary illuminations or implications of Korean leaderships through Admiral Yi Sun-sin's war history? Then, this study analyzed literature reviews, this author's field interviews in the time of war participation, and leadership war history focusing on Admiral Yi Sun-sin's leadership for four major sweeping victories. According to the results of these analyses, this study extracted (1) the strategic leadership to predict and prepare the future, (2) the leadership of integration to create synergy effects, and (3) the leadership of knowledge to be practiced focusing on combats. In addition, in order to reinforce spiritual combat power based upon jointness, (1) it is necessary to precede in-depth and substantial leadership diagnosis for enhancing jointness. (2) It is necessary to embody national defense reform as well as integration for jointness improvement after scientifically comparing and analyzing the differentiation and integration between the Ministry of National Defense, army-navy-air force leadership centers, and PKO centers. (3) It is necessary to promote the merger and abolition between institutions related to intangibale combat power under the Ministry of National Defense.