• Title/Summary/Keyword: Air-conditioning system

Search Result 3,317, Processing Time 0.022 seconds

Performance Characteristics of Refrigeration System Using R744 as a Secondary Refrigerant (2차 냉매로 천연냉매 R744를 사용하는 냉동시스템의 성능 특성)

  • Yi, Wen-Bin;Jo, Hwan;Yoon, Jung-In;Choi, In-Soo;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • In this paper, the performance characteristics of R404 indirect refrigeration system using R744 as a secondary refrigerant were investigated experimentally to obtain a optimum design data for this system. First, for the constant experimental conditions, the COP of R404A indirect refrigeration system using R744 as secondary refrigerants decreases with respect to the increases in R404A condensation temperature and temperature difference in R744 cooler. And, the COP of indirect refrigeration system using R744 as secondary refrigerants decreases slightly with decreasing the mass flowrate of R744.

The Effect of Cold Air Stimulation on Electroencephalogram and Electrocardiogram during the Driver's Drowsiness (운전자 졸음시 냉풍 자극이 뇌파 및 심전도 반응에 미치는 영향)

  • Kim, Minsoo;Kim, Donggyu;Park, Jongil;Kum, Jongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.134-141
    • /
    • 2017
  • The purpose of this study was to analyze physiological changes via a cold air reaction experiment to generate basic data that are useful for the development of an automobile active air conditioning system to prevent drowsiness. The $CO_2$ concentration causing drowsiness in vehicle operation was kept below a certain level. Air was blown to the driver's face by using an indoor air cooling apparatus. Sleepiness and the arousal state of the driver in cold wind were measured by physiological signals. It was evident in the EEG that alpha waves decreased and beta waves increased, caused by cold air stimulation. The ${\alpha}/{\beta}$ ratio was reduced by about 52.9% and an alert state confirmed. In the electrocardiogram analysis, the efficiency of cold air stimulation was confirmed by the mean heart rate interval change. The R-R interval had a delay time of about one minute compared to the EEG response. The findings confirmed an arousal effect from sleepiness due to cold air stimulation.

Cold Air/Water Distribution System with Ice Storage (빙축열을 이용한 저온급기/급수 냉방 시스템)

  • Kim, K.H.;Lee, J.W.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-133
    • /
    • 1991
  • This paper presents some design guidelines for using cold air/water distribution to cool commercial and industrial buildings. Cold air /water distribution systems provide primary air/water for space conditioning at nominal temperature between $3^{\circ}C$ and $10^{\circ}C$ ($4{\sim}5^{\circ}C$ might be recommendable for better selection). By using lower temperature primary air/water equipment could be downsized, means lower first costs, and often reduce annual energy costs up to 50% less than that of the conventional ($13^{\circ}C$) system. This concept takes full advantages of the $2{\sim}4^{\circ}C$ chilled water (brine) available with ice storate systems.

  • PDF

Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases (룰 베이스를 이용한 공조기의 고장검출 및 진단)

  • 한도영;주명재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design (공기조화설비(HVAC) 설계시 혼합손실의 정량적 평가방안의 제안)

  • 이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.879-885
    • /
    • 2000
  • It is a serious subject for energy conservation to prevent the energy loss caused by mixing of heated and cooled air jets in a building which two types of air-conditioning systems are adopted in perimeter and interior zone. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of the mixing loss and to propose preventive methods for it. In this paper, by using the dynamic heat load calculation method, heat extraction loads of a typical office building in Pusan are calculated. According to the results, numerical simulation based on the computational fluid dynamics were peformed in order to measure the mixing loss in physical size HVAC system. Then, the distributions of air temperature and velocity are analyzed in order to grasp the relations by setting temperature differences influence on the mixing loss.

  • PDF

Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools (핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교)

  • Jeong, Seok-Kwon;Lee, Dan-Bi;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

A Study on the Rule Development for BIM-based Automatic Checking in a Duct System (덕트설비의 BIM 기반 자동검토를 위한 규칙개발에 관한 연구)

  • Song, Jong-Kwan;Cho, Geun-Ha;Ju, Ki-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.631-639
    • /
    • 2013
  • This study derives quality checking items in Building Mechanical Systems Design Criteria, and suggests quality criteria to review BIM models in the duct system of an air conditioning system for rule-based automatic checking. First, components for the duct system of an air conditioning system were reviewed, and the quality checking items were drawn from Building Mechanical Systems Design Criteria, through assessment according to object, attribute and relationship composing the BIM model. Second, quality checking types were derived, by analyzing the quality checking items and Rule set of the Solibri Model Checker. Finally, methods of algorithm functioning for checking the BIM models for mechanical systems in computers were drawn, and Elements to comprise the quality checking criteria (rule) were suggested. This study means that that checking items are derived from domestic criteria, and a way for the development process of determining quality checking criteria (rules) is suggested.

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.