• Title/Summary/Keyword: Air-conditioning system

Search Result 3,315, Processing Time 0.032 seconds

Flow Analysis around the Roller Conveyor in a Clean Room (클린룸 내 롤러 컨베이어 운송장치 주위의 유동해석)

  • Jeon, Hyun-Joo;Park, Chan-Woo;Im, Ik-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1507-1512
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

  • PDF

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

A Study on Oil Path Design in the Journal Bearing of a Reciprocating Compressor (왕복동식 압축기의 저널 베어링 오일 패스 설계를 위한 연구)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2013
  • Because the performance of a reciprocating compressor in refrigeration and air-conditioning systems is influenced by the lubrication characteristics of sliding components, the lubrication characteristics between the crankshaft and journal bearing have to be researched for the design and the performance improvement of reciprocating compressors. Thus, the proper supply of lubricant for a lubrication between the crankshaft and journal bearing is essential, and an oil path for lubricant supply is installed in the shaft or bearing. However, in order to guarantee the lubrication performance of the journal bearing, it is necessary to design the position of the oil path. Therefore, it is studied to find the optimum position of the oil path by the analysis of the pressure distribution in the journal bearing. The results show that the position of the oil path is significantly influenced by the pressure distribution of the oil film in the journal bearing.

Heat Transfer Enhancement using Nano Particles coated Surface (나노 코팅을 이용한 열전달 향상에 대한 연구)

  • Gang, Myung-Bo;KIm, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.2
    • /
    • pp.8-14
    • /
    • 2018
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with excellent thermal properties. Therefore, in this study, we investigated the influence of nano particles coated surface for heat transfer enhancement in pure water, oxidized multi-wall carbon nanotube nanofluid (OMWCNT), and oxidized graphene nanofluid (OGraphene). Nanoparticles were coated for 120 sec on the surface, and we measured the CHF at the flow velocities of 0.5, 1.0, and 1.5 m/sec, respectively. As the results, both of the OMWCNT and OGraphene nanofluids increased up to about 34.0 and 40.0%.

Thermal Design of a Cooling Coil for Building Air Conditioning (건물 공조용 냉수 코일의 열 설계)

  • Kim, Nae-Hyun;Byun, Ho-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6445-6452
    • /
    • 2015
  • The surface of the cooling coil becomes dry, wet or partially wet depending on the operating condition. Thus, a proper design of the cooling coil should include a heat transfer analysis on dry, wet or partially wet surfaces. In this study, an elementary model, which analyzes the cooling on an elementaty basis, is proposed. Comparison of the predictions of the model with experimental data of the cooling coil revealed that heat transfer rates were predicted within 10.1%, airside pressure drop within 11.1% and sensible heat ratio within 5.7%. The model was used to investigate the effect of water circuitory on cooling coil performance.

Development of Integrated HVAC Noise Analysis Program for Ships (선박용 통합 HVAC 소음해석 프로그램 개발)

  • Han, Ju-Bum;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Nho-Seong;Chun, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

Improvement of Uncertainty for Gravimetric Flow Calibrator (10톤 용량의 중량식 교정장치에 대한 불확도 개선)

  • Lee, Dong-Keun;Park, Joo-Young;Lee, Haeng-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1042-1046
    • /
    • 2008
  • Both the weighing bridge and the diverter system is a important component in achieving a high accuracy liquid flow rate standard using a static gravimetric method. The weighing bridge is a tank which weighing collected flow with a load cells. The diverter is a moving device used to direct flow alternately along its normal course(by pass) or towards the weighing tank. The time needed for collection into the weighing tank is measured using a timer. So it is important to the diversion period is sufficiently fast and triggering point of timer which is determined the filling time. On this studies show that the measurement deviation of load cell and uncertainty of diverter system for changing diversion speed and triggering point was estimated in accordance with Guide to The Expression of Uncertainty in Measurement(ISO).

  • PDF

Suggestion of New Heat Tariff Assessment for District Heating Using Exergy (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Jung-Hwan;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.912-918
    • /
    • 2008
  • In this study, the exergy which could be reflected on energetic and economic value was used to assess on heat tariff of district heating system instead of enthalpy. Exergy is difficult to apply directly to present heat charge system because of complex calculation. Therefore, the difference between supply and return temperature was converted to the exergy temperature difference for easily calculating the amount of heat. As a result of exergy analysis for a DH substation, the exergy temperature difference were not affected on surrounding temperature and pressure loss. Supply temperature, maximum difference between supply temperature and return temperature had a main effect on the exergy temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with previous heat charge. Heat charges in other seasons were almost same. It is thought that heat tariff using exergy will be appropriate in terms of both DH supplier and consumer.

  • PDF

Prediction of density and viscosity for $CO_2$-oil mixture at low oil concentration (낮은 오일 농도에서 $CO_2$-Oil 혼합물의 밀도와 점성예측)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.136-141
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems since 1990s. In a refrigeration cycle, oil is utilized in lubricating a compressor. However, although oil separators are installed after a compressor oil is prone to leak to the whole system. The mixing of $CO_2$ and oil, even a small amount of oil, the heat transfer performance in heat exchanger deteriorated and the pressure drop inside tube increases. Therefore, it is needed to precisely estimate the mixture thermodynamic properties of $CO_2$-lubricant oil to correctly design a $CO_2$ refrigeration system. The commonly used method in estimating the mixture properties is the mole based weighting model. However, the accuracy of the method can not be assured. In the present study, $CO_2$-lubricant oil mixture properties including viscosity and density were estimated by using the mixture models, based on the equation of state (EOS).

  • PDF

Simulation of the Kalina cycle for a Geothermal Power Generation (지열발전을 위한 칼리나 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.782-787
    • /
    • 2008
  • The Kalina cycle simulation study was carried out for a preliminary design of a geothermal power generation system. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The simulation results show that the power generation efficiency over 10% is expected when a heat source and sink inlet temperatures are $100^{\circ}C$ and $10^{\circ}C$ respectively.

  • PDF