• Title/Summary/Keyword: Air-conditioner for automobile

Search Result 37, Processing Time 0.027 seconds

Performance of Alternative Refrigerants for R12 and R134a in Automobile Air-Conditioners (자동차 공조기용 R12 및 R134a 대체 냉매의 성능평가)

  • Baek, In-Cheol;Park, Ki-Jung;Shim, Yun-Bo;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.403-410
    • /
    • 2007
  • In this study, natural refrigerants and their mixtures that can supplement and replace R12 and R134a in automobile air-conditioners are studied. R134a is currently used as the refrigerant in new motor vehicle air conditioners, replacing the ozone depleting refrigerant R12. Although R134a has no ozone depletion potential, it has a relatively large global warming potential, approximately 1300 times that of $CO_2$ over a 100 year time horizon. For this reason, performance of natural refrigerants and their mixtures containing R152a, RE170 (Dimethylether, DME) and R600a (Isobutane) are measured under 2 different temperature conditions. They were tested in a refrigerating bench tester with an open type compressor. The test bench provided about 4 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. Test results show that the coefficient of performance (COP) of these refrigerants is up to 21.55% higher than that of R12 in all temperature conditions. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

Performance of HFC152a, HFC134a and HC290 Mixtures as Alternative Refrigerants for HFC134a (HFC152a, HFC134a, 프로판을 포함한 자동차용 대체/보충 냉매의 성능)

  • Kang, Nam-Koo;Bae, Guen-Hwan;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.383-391
    • /
    • 2010
  • In this study, HFC152a, HFC134a/HFC152a and HC290/HFC134a/HFC152a mixtures are studied for the supplementary and alternative refrigerants for HFC134a used in automobile air-conditioners. Due to the high global warming potential of HFC134a, it has to be phased out in the long run. Thermodynamic performance of these refrigerants are measured in a bench tester of 3.5 kW capacity with an open type compressor under both summer and winter conditions. Test results show that the coefficient of performance (COP) and capacity of pure HFC152a and HFC134a/HFC152a mixture are 9.1~12% and 7% higher than those of HFC134a. As for the HC290/HFC134a/HFC152a, the COP is up to 9.5% higher than that of HFC134a with 1~2% of HC290 while that is up to 6.1% lower than that of HFC134a with 5% HC290. The capacity of the ternary mixture, however, is 8.6% higher than that of HFC134a at all compositions tested. The compressor discharge temperatures of all refrigerants tested are $6{\sim}10^{\circ}C$ higher than that of HFC134a. For all refrigerants, the amount of charge is reduced up to 32% due to the decrease in liquid density. Overall, these refrigerants provide good performance with reasonable energy savings with less environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

Improved Performance Through Air Conditioner Outdoor Fan Airflow Increase and Relative Cost Reduction (에어컨 실외기 풍량증가를 통한 성능 향상 및 상대적 원가절감)

  • Kim, Jae-Yeol;Choi, Seung-Hyun;Kim, Sung-Hyun;Ki, Suk-Ho;Yoon, Sung-Un
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.570-574
    • /
    • 2012
  • Spread of household air conditioning system is continued to be increased. Axial fan in the external unit of air conditioning system is for ventilation and air supplying unit, and the related products have been widely adopted as household electronics, automobile engine, big sized blower in factory, tunnel, and subway. In this study, commercial 3-winged propeller fan is modified to shape and modified to 2-winged fan for the airflow increase and cost reduction. Using 3D modelling, the fan shape is modified, and analysis flow is adopted to provide the way to airflow increase and reduce cost while maintaining the same wind capacity.

Lifetime Assessment Criteria and Failure Analysis for the Clutch Coil in an Automotive Air Conditioner (자동차용 에어컨 클러치 코일의 수명평가 기준과 고장해석)

  • Choi, Man-Yeop;Wei, Shin-Hwan;Kim, Jung-Sik;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2011
  • The clutch coil mounted on the automotive air conditioner is an important part which actuates the clutch to connect or disconnect the pulley and the compressor according to the climate control condition in an automobile. Here, it is generally required that the clutch coil should ensure the long term durability requirement, such as a warranty for the 10 years of field operation or 160,000 km driving, especially in a brand new item, and so forth. However, some difficulties have arisen in restoring its credibility, since domestic specifications for the part have not been yet unified. In order to ensure the reliability, test methods and assessment criteria should be standardized. Moreover, assessed lifetime under specific conditions and potential failure analysis would be important. In this study, lifetime test specifications for the clutch coil have been reviewed and methodological suggestions are provided to ensure reliability, utilizing a quality function deployment through the potential failure mode effect analysis.

Process Design of Pulley for Automobile Airconditoner in Cold Forging (자동차 냉방기용 내부 풀리의 냉간 단조 공정 설계)

  • 김동진;정덕진;김병민;최재찬
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.199-206
    • /
    • 1997
  • The inner pulley is an automobile component used as air conditioner clutch assembly. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and outer one, and to make uniform the hardness distribution in the forged product. In industry, the design of forging processes is performed based on experience-oriented technology, that is, designers experience and expensive trial and error. Using the rigid-plastic finite element simulations. we design the optimal process conditions, which has a preforming operation. Also the final product configuration of forging has to be designed again in view of metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that distribution has improved to be even and high enough for industrial application.

  • PDF

A Study on Electrical Characteristics of a Capacitive Pressure Sensor Element to Measure the Pressure of Refrigerant of Air-Conditioner (에어컨 냉매압 측정용 정전용량형 압력센서 소자의 전기적 특성 연구)

  • Choi, Ga-Hyun;Chung, Woo-Young;Choi, Jung-Woon;Kim, Si-Dong;Min, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.208-213
    • /
    • 2015
  • The purpose of this study is to optimize the design of a capacitive pressure sensor element using the simulation of electrical characteristics. The simulation of the ceramic sensor diaphragm ($Al_2O_3$) was performed by permitting pressure to change the curvature of the diaphragm. The pressure capacitance ($C_P$) was increased from 19.63 pF to 15.26 pF by applying pressure because the distance between the electrodes has been changed from $30{\mu}m$ to $15{\mu}m$. When the thickness of the diaphragm was changed to 0.46~0.52 mm, a larger capacitance change showed in accordance with the reduced thickness, which means an increase of sensitivity. However, considering the viewpoint of the signal linearity, it was selected for the optimum thickness of the diaphragm to 0.50 mm. The designed sensor element based on simulated results was tested to measure the output characteristics. Comparing of simulated and measured results, there was a margin of error of approximately 2%.

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3 I$ (HFC-152a와 HFC-1523에 $CF_3 I$를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;김재열;이연신;권일욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2001
  • To prevent green house effect and destruction of an ozone layer, an ozone destruction potential(OBP) must be zero and a refrigerant for low global warming potential(GWP) is needed. HFC-l34a, in which hydrogen is mixed instead of chlorine is a refrigerant used for automobile conditioners and its destruction potential is ecologically zero. However, it is not consid- ered as a perfect substitutive refrigerant as its GWP is high. It is studied refrigerant mixtures in which HFC-l52a and $CF_3 I$ in HFC-l52a with low GWP and zero ODP are mixed by experimentally and concluded as follows: 1) With the variation of speed of compressor outside temperature and flow rate, 7he heat of evaporator and compressor and coefficient of perfor- mance was varied, and influenced the air conditioner. 2) The pressure of evaporator was decreased with increasing the speed of compressor and the pressure of evaporator with the refrigerant HFC-l52a was higher 24% than that of azotrope refrigerant mixed with $CF_3 I$

  • PDF

Development of an Air-conditioning Fan for a Van (승합차량용 공조 팬의 개발)

  • 김재원;정윤영
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2000
  • This paper is concerningon the development of cross-flow fan (CFF) for vehicles. CFF is widely usedhome-appliance products. This work mainly Intends developing CFF only for an automobile. In order to do that, new design involving blade shapes is proposed with enough performance for the operation. Spacially three steeps are proceeded for blade design. injection conditions for manufacturing, and capacity test for fluid mechanics. The present methodologies are to find optimal design for the blades and conditions for the injection process. This project has continued since last two years and finally succeeded.

  • PDF

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).