• Title/Summary/Keyword: Air-blowing carrying

Search Result 2, Processing Time 0.026 seconds

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.