• Title/Summary/Keyword: Air-Fuel Ratio

Search Result 804, Processing Time 0.033 seconds

Evaluation of Combustion Stability of Idling Speed State (LBT연소를 통한 Idling 운전시의 연소안정성 평가)

  • 이중순;이종승;김진영;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF

Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions (극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Analysis of PI air-fuel ratio feedback control system (비례적분 방식의 피드백 공연비 콘트롤 시스템 해석)

  • 이대영;박경석;노승탁;김응서;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 1991
  • Air/fuel ratio control system for gasoline engines has been analyzed to determine the control gain of the system. In this analysis the engine is modelled to be a simple time delaying element and the ramp-and-jump method is used to control air/fuel ratio. The result shows that it is necessary to measure the air flow rate accurately to enhance the control performance. And also it is shown that the control gain must be determined in some bounded region to meet the fast dynamic response and high catalyst conversion efficiency together.

  • PDF

Air Fuel Ratio and Calculation According to Fuel Composition (III) -Comparison of Various Calculation Method- (연료 조성에 따른 공연비 산정 (III) - 공연비 계산방식간의 상호 비교 -)

  • Park Chanjun;Ohm Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1147-1154
    • /
    • 2004
  • This paper is the third of several companion papers which compare the method of Air-Fuel ratio determination. In the previous works, Eltinge chart was expanded to arbitrary fuel composition as a reference exhaust composition. The compensation of unburned hydrocarbon in Eltinge chart and comparison of Spindt and Eltinge method were also discussed. In addition to Eltinge and Spindt's one, however, there are many methods which calculate Air-Fuel ratio from exhaust emission. Among these methods, carbon balance and oxygen balance are widely used in practice. In some applications, linear formula from statistical method is being used in the field due to its simplicity and convenience. In this paper, these various methods are evaluated and compared with Eltinge results and new linear formula is proposed for the gasoline fuel. The results show that the corrected carbon balance equation has excellent agreement with Eltinge and Spindt's one. On the other hands, the oxygen-balanced formula has a limitation according to the mixture state and AFR. For gasoline fuel, newly proposed linear equation has good compatibility with Eltinge and Spindt up to AFR 17.

Part Load Performance Characteristics of Domestic Wood Pellet Boiler (가정용 목재 펠릿 보일러에 대한 부분부하 운전 특성)

  • Kang, Sae Byul;Kim, Jong Jin;Kim, Hyouck Ju;Park, Hwa Choon;Choi, Kyu Sung;Sim, Bong Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.103.1-103.1
    • /
    • 2010
  • Recently domestic wood pellet boilers are installed in rural and forestry houses. The fuel price per lower heating value of wood pellet is about 20 % lower than that of heating oil on July 2010. In spite of lower price of wood pellet, a few user of wood pellet boiler complain expensive fuel cost. One of this reason is inaccurate or improper air-fuel ratio setting of wood pellet boiler. O2 concentration of flue gas of domestic wood pellet boiler is about 9.7 % and there are few domestic wood pellet boiler which can control air-fuel ratio automatically. We tested a domestic wood pellet boiler in changing boiler thermal output and air-fuel ratio. The nominal boiler thermal output is 25 kW (21 500 kcal/h). We measured thermal efficiency and flue gas concentrations such as CO and NOx at each boiler thermal load with various air-fuel ratio. The results show that if air flow rate is the same as full load and part load, thermal efficiency of part load of 40 % drops about 7.7 %p compared to boiler full load case.

  • PDF

A Study on the Influence of Equivalence Ratio and Kinds of fuel in Flame Structure (화염 구조에 미치는 연료 및 당량비에 관한 연구)

  • Park, S.K.;Choi, N.J.;Yamashita, H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • In order to clarify the effect of equivalence ratio and kinds of fule in flame structure, a numerical simulation of triple flame developed in a co-flowing methane-air and air stream was carried out by the elementary chemical reaction mechanism. The following conclusions were obtained. Equivalence ratio at which the apparent burning velocity is maximum is a little larger than that of the one-dimensional premixed flame. Apparent burning velocities are two times higher than that of the one-dimensional premixed flame for the methane-air. The flame thrusts out forward in the downstream of the boundary between mixture and air stream, and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated; this triple flame is composed of fuel rich and lean premixed flame branches and a diffusion flame branch. Near the equivalence ratio at which the burning velocity of rule-dimensional premixed flame is the largest the effect of one-dimensional premixed flame becomes large and the fuel rich premixed flame advances and becomes vertical to the flow direction.

  • PDF

Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio (연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구)

  • Hwang, Yu-Hyeon;Jung, Dong-Ho;Kim, Sun-Min;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.835-841
    • /
    • 2010
  • The design of the fuel injector is one of the important operating factors that determine the extent of mixing of air and fuel in an MEMS gas turbine engine. In this study, we consider a system with three inlet ports with each port having multiple injectors. We perform a parametric study by varying the arrangement of fuel injectors and difference of ratio of fuel supply. The results are presented in terms of the premixed flow distribution and equivalence ratio.

A Study on the In-Cylinder Injection Type Hydrogen Fueled S.I. Engine (연소실내 분사식 수소연료기관의 특성에 관한 연구)

  • 조우흠;이형승;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1702-1708
    • /
    • 1995
  • Owing to the serious problem of hydrocarbon fuel such as environmental pollution, the development of alternative fuel is very urgent. To adopt hydrogen to the internal combustion engine, a solenoid-drive type in-cylinder injection system was constructed. The injection system was installed to the single cylinder research engine, and the engine performance and the emission of citric oxide were tested upon the fuel-air equivalence ratio and the spark timing. In the case of in-cylinder injection system, hydrogen is injected after the intake valve is close, so it is possible to operate the engine without the back fire and the fall of its volumetric efficiency. In the region of the fuel-air equivalence ratio below 0.5, hydrogen and air aren't well mixed and the thermal efficiency is lowered, so the nozzle should be designed to inject hydrogen uniformly into the combustion chamber. In the region of the fuel-air equivalence ratio above 0.7,the fuel-air mixture burns very fast and the amount of citric oxide emission increases rapidly, so the spark timing should be retarded as compared with MBT.

A Study on the Propriety of Ultrasonic Atomization Apparatus for the Gasoline Engine (l) - In the Case of the Atomization of Fual - (가솔린 기관용 초음파 미립화장치의 타당성에 관한 연구 (I) - 연료 미립화를 중심으로 -)

  • 조규상
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.41-49
    • /
    • 1987
  • It is an experimental study to improve the characteristics of combustion and exhaust emission gas in the gasoline engine. These characteristics are influenced by the fuel droplet size. To improve these characteristics, we make the ultrasonic atomization apparatus, and compare with the commercial carburetor. The results obtained are as follows: 1. Maximum atomization quantity is obtained by the vibrator of resonancy frequency 1.65MHz in the ultrasonic atomization apparatus. 2. With ultrasonic atomization apparatus, more than 99% of atomization rate can be obtained regardless of intake air temperature, velocity, and air-fuel ratio. 3. Atomization rate of the commercial carburetor increases with the air-fuel ratio and intake air temperature. 4. Difference of atomization rate between the ultrasonic atomization apparatus and the commercial carburetor increases with decreasing air-fuel ratio. 5. Droplet size is about 1-5.mu.m at the ultrasonic atomization apparatus, and 80-150.mu.m at the commercial carburetor, which indicates the ultrasonic atomization apparatus is excellent in atomization.

  • PDF