• Title/Summary/Keyword: Air-Conditioning system

Search Result 3,315, Processing Time 0.045 seconds

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - Results Influenced by the Choice of a Criterion Function - (슬래브축열의 최적제어방책에 관한 연구 -평가함수의 선택이 결과에 미치는 영향-)

  • Jung, Jae-Hoon;Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.896-905
    • /
    • 2006
  • An optimal control of an air-conditioning system with slab thermal storage is investigated by making use of the Maximum Principle. An optimal heat input to a plenum chamber and an air-conditioned room is determined by minimizing a criterion function which is given as integral sum of two terms. The first term is the square of the deviation in the room air temperature from the set-point value, and the second is the absolute value of the heat input. The result indicates that it tries to keep a room air temperature in set-point value by heating as much as possible at the time of a setup of a room air temperature or just before that, in order to avoid a heat loss arising at the time of the non-air conditioning. The result is compared with that of the case when the square of the heat input is used as a criterion.

Dynamic Models and Intelligent Control Algorithms for a $CO_2$ Automotive Air Conditioning System (자동차 $CO_2$ 냉방시스템의 동적모델과 지능제어알고리즘)

  • Han, Do-Young;Jang, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • In the respect of the environmental protection viewpoint, $CO_2$ may be one of the most attractive alternative refrigerants for an automotive air-conditioning system. For the development of control algorithm of a $CO_2$ automotive air-conditioning system, characteristics of a $CO_2$ refrigerant should be considered. The high-side pressure of a $CO_2$ system should be controlled in order to improve the system efficiency. In this study, dynamic physical models of a $CO_2$ system were developed and dynamic behaviors of the system were predicted by using these models. Control algorithms of a $CO_2$ system were also developed and the effectiveness of these algorithm was verified by using dynamic models.

Numerical Simulation of a System Heat Pump Adopting an Integral Optimum Regulating Controller (적분형 최적 레귤레이터 적용 시스템 히트펌프 제어 시뮬레이션 연구)

  • Kim, Yongchan;Choi, Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.398-405
    • /
    • 2013
  • Small and medium-size buildings employ a multi-distributed individual air-conditioning system that utilizes package air conditioners instead of centralized cooling systems, which can allow easier building management and maintenance, along with a diversification of facility use. Inverter driven system heat pumps have been developed to achieve not only an easy distribution control, allowing free combination of indoor units with different models and different capacities, but also wide applications to intelligent air conditioning. However, the control algorithms of the system heat pump are limited in the open literature, due to complicated operating conditions. In this paper, an inverter-driven system heat pump having two indoor units with electronic expansion valves (EEV) was simulated in the cooling mode. An integral optimum regulating controller employing the state space control method was also simulated, and applied to the system-heat pump system, to obtain efficient control of the MIMO (multi input multi output) system. The simulation model for the controller yielded satisfactory prediction results. The new control model can be successfully utilized as a basic tool in controller design.

A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater (복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구)

  • Choi, Hwi-Ung;Rokhman, Fatkhur;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.

Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve (전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성)

  • Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan;Ha, Soo-Jung;Jeon, Min-Ju;Park, Sung-Hyeon;Lee, Sang-Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

The Study on Performance in Underfloor Air Distribution(UFAD) Systems using Simulator (시뮬레이터를 이용한 바닥급기시스템의 성능에 관한 연구)

  • Yu, Ji-Yong;Jeong, Cha-Su;Cho, Dong-Woo;Yu, Ki-Hyung;Kim, Dong-Hee;Seo, Jung-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.211-216
    • /
    • 2005
  • The authors carried out experiment, Computer Fluid Dynamics(CFD) and energy simulation of simulator. As a results of experiment and CFD, diffuser velocity is very important design factor for occupied zone air conditioning in Under Floor Air Distribution(UFAD) system. Then, in contrast to energy consumption of the Overhead system, the UFAD system could reduce 6.4% of the total energy because of occupied tone air conditioning. It concluded that tile UFAD system is more effective in energy Performance than the Overhead system.

  • PDF

A Study on the Energy Conservational HVAC System Design Strategies (에너지 절약적 공조시스템 선정을 위한 기초적 연구)

  • Cho, Jin-Kyun;Hong, Min-Ho;Jeong, Cha-Su;Kim, Byung-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.58-63
    • /
    • 2007
  • Lots of needs are being paid for how to design HVAC system in large-scale buildings. Increasing awareness of energy use is main point of this research. HVAC systems' energy characteristics are not clearly identified and understood, so the optimal design of HVAC system is very important. The energy parameters of HVAC design that are system input energy, water/air moving equipments (pumps/fans) energy and outdoor air conditioning energy for IAQ are important. The purpose of this study is to provide the basic data for energy conservational HVAC design strategies.

  • PDF

HVAC & Refrigeration System for Work Barge Vessel (WORK BARGE 선의 냉동.공조 SYSTEM)

  • Nam, Im-Woo;Jung, Jae-Chun;Kim, Bong-Je
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.583-590
    • /
    • 2008
  • 최근 작업자 숙소 및 이송용 외에 작업용으로 사용 가능한 Barge선의 일종인 Accommodation Work Barge 선의 건조량이 증가 추세인 바 현재 중국에서 건조 중인 해당 선박의 HVAC & Refrigeration system에 대하여 정리하였다. 본 시스템은 R404A Direct expansion 냉각방식 (직접팽창방식)이 적용되었으며 HVAC system 중 Air conditioning 부분에 대해서는 선박의 각 Deck 기준으로 Zoning 하여 개별적인 Air handling unit와 Condensing unit를 구성하였으며 (각 unit의 용량은 필요용량의 100%), 냉동 창고의 Refrigeration system은 해당 격실 (육고, 어고, 야채고)에 각각 Unit cooler를 설치하고, Condensing unit를 기계실에 설치하였다. 장비는 전체 용량 100%에 대하여 항시 운전하는 100% 용량의 장비와 비상시에 운전하는 100% 용량의 예비 장비로 구성된다. 냉동 창고에 인접한 Dry provision store는 냉동 창고와는 별개로 중앙 공조기로부터의 냉각 공기를 이용하여 Spot cooling하였다. 본 System의 구성에 대한 장점 및 단점은 아래와 같다. 1. Air conditioning system이 각 Zone에 대하여 구성되므로 각 Zone에 대하여 제어가 가능하다. 2. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 냉매 배관의 길이가 짧다. 3. Air con. 실에 Air handling unit와 Condensing unit가 설치되므로 실내의 Maintenance space 상에 여유가 없다.

  • PDF

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Effect on Thermal Characteristic arid Air Pattern of System by Opening Configuration - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 -지하피트 공간 내의 개구부 형상이 시스템의 열적 특성 및 기류성상에 미치는 영향-)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper presents the effect of opening configuration on the thermal behavior and air pattern of earth tube system. The earth tube system is a fresh air load reduction system by using underground double floor space for air-conditioning. In order to analyze the effect of opening configuration on thermal performance of this system and air pattern in underground double floor space quantitatively, we used a model dealing with tree-dimensional profile of wind velocity and temperature in underground double floor space. In conclusion, it is confirmed that heat exchange of a fresh air is mainly performed with upper and lower wall in underground double floor space, and that heat exchange area increased by installing the opening near the wall.