• 제목/요약/키워드: Air-Bending Test

검색결과 68건 처리시간 0.03초

곡률이 다른 직교이방성 CFRP 적층쉘의 관통파괴특성 (Penetration Fracture Characteristics of Orthotropic CFRP Laminates Shells according to Curvature)

  • 양용준;편석범;차천석;양인영
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.6-11
    • /
    • 2016
  • CFRP composite laminates are widely used as structural materials for airplanes, automobile and aerospace vehicles because of their high strength and stiffness. This study aims to examine an effect of curvature on the penetration fracture characteristic of an orthotropic composite laminated shell. For the purpose, we manufactured orthotropic CFRP shell specimen with different curvatures, and conducted a penetration test using an air-gun. Those specimens were prepared to varied curvature radius(${\infty}$, 200mm, 150mm and 100mm)and were stacked to $[O^{\circ}{_3}/90^{\circ}{_3}]_s$. When the specimen is subjected to transverse impact by a steel sphere(${\Phi}10$), the velocity of steel sphere was measured both before and after impact by determining the time for it to pass two ball-screen sensors located a known distance apart. As the curvature increases, the absorption energy and the critical penetration energy increased linearly because the resistance to the bending moment. Patterns of cracks caused by the penetration of CFRP laminated shells included fiber breakage, lamina fracture, matrix crack interlaminar crack and intralaminar crack.

폐타이어를 이용한 목질고무 복합패널의 물성에 관한 연구 - 원료혼합비율에 따른 복합패널의 재질변화 - (Studies on Physical Properties of Wood-based Composite Panel with Recycled Tire Chip - Change of Properties on Composite Panel by Mixing Ratio of Combined Materials -)

  • 이원희;변희섭;배현미
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권1호
    • /
    • pp.70-75
    • /
    • 1998
  • In this paper, the relationships between volumetric mixing ratio of rubber chip and physical and mechanical properties of wood/rubber composite panel was examined in order to investigate the mixture characteristics of wood and rubber chip. Because of the specific gravity of rubber differed from wood chip, physical properties of wood/rubber composite panel was shown very different values by mixing rate of chip element. Specific gravity in air-dry of composite panel was increased rapidly as volumetric percent of rubber chip was increased. Moisture content of composite panel was decreased as volumetric percent of rubber chip element was increased. This results was considered that wood weight is light and porosity material for moisture absorption. Compressive strength and modulus of rupture in bending test were decreased as volumetric percent of rubber chip increased. By mixing ratio control of chip elements, various wood/rubber composite panel can be applicable to every interior materials such as subfloor, playground, and exterior materials such as road blocks for recreational facilities in garden and forest and city parks.

  • PDF

Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

  • Lim, Sang-Sub;Mun, Jae-Chul;Kim, Tae-Won;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.922-934
    • /
    • 2014
  • In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

전도냉각 고온초전도 SMES 절연용 AlN의 전기적 및 기계적 특성 연구 (A Study on the Electrical and Mechanical Properties of AlN for Insulation of a Conduction-Cooled HTS SMES)

  • 최재형;곽동순;천현권;민치현;김해종;정순용;김상현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.957-958
    • /
    • 2007
  • The conduction-cooled HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

  • PDF

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측 (Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings)

  • 황성호;문창국;김태호;이종성;조경석;하경구;이창하
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.

TESPT 실란커플링제가 침전 실리카로 보강된 오일씰용 NBR복합소재의 기계적 물성에 미치는 영향 (Effect of TESPT Silane Coupling Agent on Mechanical Properties of Precipitated Silica Filled NBR Compound for Oil Seal)

  • 이영석;황기섭;이종철;김태근;하기룡
    • Elastomers and Composites
    • /
    • 제46권1호
    • /
    • pp.45-53
    • /
    • 2011
  • 실란커플링제인 bis-(3-triethoxysilpropyl)tetrasulfide (TESPT)가 실리카 충전 오일씰용 NBR 복합소재의 물성에 미치는 영향에 대하여 연구하였다. 복합소재의 가교거동과 가교밀도는 ODR (oscillating disk rheometer)과 톨루엔 팽윤비 시험을 통하여 측정하였으며, 기계적 물성은 가황물을 공기 내열 노화 및 ASTM No.3 oil에 내유 노화시켜 시험 전 후 값을 UTM (universal testing machine)과 Shore A 경도계를 사용하여 측정하였다. 오일씰의 성능과 수명에 큰 영향을 미치는 복합소재의 탄성회복은 가황물에 굽힘 변형을 주어 노화시킨 후 시편이 회복되는 길이를 측정하여 회복 각(angle of recovery)을 계산하였으며, 저온에서의 탄성회복거동은 TR (temperature retraction) 시험을 통하여 측정하였다. 또한, Taber식 마모시험기를 사용하여 가황물의 내마모성을 측정하고 SEM(scanning electron microscope)을 사용하여 마모면의 형상을 관찰하였다. 시험결과 실리카가 충전된 복합물에 TESPT가 첨가되면 복합물의 흐름성이 향상되고 실리카와 NBR 간의 상호작용 및 가황물의 가교밀도가 향상되어 가황물의 경도, 100% 모듈러스, 탄성회복성, 내마모성, 내열노화성 및 ASTM No.3 오일에 대한 내유성이 향상됨을 알 수 있었다.

낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究) (A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis)

  • 이춘택;김수창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권3호
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험 (Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application)

  • 이동현;김병옥;선경호;임형수
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

순환골재 혼합비율에 따른 인터로킹 블록의 물리적 특성에 관한 연구 (A Study on the Physical Properties of Interlocking Block with the Contents of the Recycled Aggregate)

  • 전찬수;송태협;윤상혁
    • 한국건설순환자원학회논문집
    • /
    • 제7권4호
    • /
    • pp.71-78
    • /
    • 2012
  • 순환골재는 건설폐기물을 재활용함으로써 자원절약 및 대체자원의 개발과 환경보호의 측면에서 국가 사회적으로 많은 이점을 가지고 있다. 하지만 낮은 밀도와 높은 흡수율을 가지는 저품질 순환골재는 구조용 콘크리트 골재로 사용되지 못하고 주로 저부가가치로 사용되고 있다. 따라서, 이를 위하여 폐콘크리트 파 분쇄 후 발생되는 순환골재의 재료적 특성을 규명하기 위하여 물리적인 주요성질인 시멘트함유량, 절대건조밀도, 흡수율, 등을 검토하고, 2차 제품 생산을 위한 배합설계(안)을 도출하여 이를 적용한 배합으로 생산된 시제품의 휨 강도, 흡수율, 동결 융해 후 휨 강도, 압축강도, 기건비중 등에 대한 성능평가를 실시하여 품질기준 GR규격과 비교 검토 하였다. 실헌결과 순환골재 대체율 50~90%로 증가함에 따라 GR F 4007의 성능기준 보다 우수한 품질로 나타났으며, 순환골재를 사용한 콘크리트 2차 제품의 제조 및 활용할 수 있는 소정의 물리적 특성을 확보함에 따라 각종 건설공사에서 다양하게 사용이 가능 할 것으로 판단된다.

  • PDF