• Title/Summary/Keyword: Air volume

Search Result 2,290, Processing Time 0.025 seconds

Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System (수치해석을 이용한 바닥공조 시스템의 공기환경 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Lee, Won-Keun;Moon, Ki-Sun;Kim, Jongryul;Lee, Kwang-ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber (정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석)

  • Lee, Suk-Young;Kim, Sang-Jin;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

Characteristics of Wind Flow Variation with Wing Development of Space-Reduced Damper (공간축소형 댐퍼의 날개개도에 따른 풍량변화 특성평가)

  • Baek, Geun-Uk;Baek, Nam-Do;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.113-120
    • /
    • 2021
  • An experimental device was designed to control the opening of a damper via operating the folding blade drive of the device and to control the amount of air flowing through the damper. In addition, an inverter was installed in the blower to control its fan rotation speed and hence the amount of air flowing through the damper. An experimental study was conducted on the opening of the folding blade damper and changes in the rotational speed of the blower. From the results, the theoretical air volume of the folding blade damper and experimental air volume were observed to be in good agreement within an error range of ±3%. As the mass flow rate of the air passing through the folding blade damper increases proportionally with the changes in damper opening and fan rotation speed, the performance of the damper can be controlled proportionally. The mass flow rate was also observed to increase linearly; therefore, the mass flow rate of the air passing through the folding blade damper increases proportionally with changes in the rotation speed of the blower, such that the performance of the damper is proportional to a constant air volume even with varying rotation speeds of the blower.

Development of HVAC System to Lower the Conveyance Energy and Building Height (반송동력과 건물층고 저감형 공조시스템 개발)

  • 김정엽;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.

Development of HVAC System to Lower the Conveyance Energy and Building Height

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2005
  • The new HVAC system is developed to lower the conveyance energy and building height using IAV(Increasing Air Volume) technique. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy. size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 percentage.

A Study on Air Temperature Reduction Effect and the Functional Improvement of Street Green Areas in Seoul, Korea (서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구)

  • Jung, Hee-Eun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2015
  • The goal of this research is to examine air temperature changes according to tree type, plantation type, roadside green area structure, and green volume of street green area within a city. The plantation type that could be analyzed for comparison by tree type with over 3 species was 1 rows of tree+shrubs. The results of analysis of average air temperature difference between pedestrian and car streets vis-a-vis 1 row of tree+shrub in high air temperature areas were: Pinus densiflora, $1.35^{\circ}C$; Zelkova serrata, $1.84^{\circ}C$; Ginkgo biloba, $2.00^{\circ}C$; Platanus occidentalis, $2.57^{\circ}C$. This standard large wide canopy species was analyzed by the roadside to provide shade to have a significant impact on air temperature reduction. In terms of analysis of the relationship between plantation type of roadside trees and air temperature, the average air temperature difference for 1 row of tree type was $1.80^{\circ}C$; for 2 rows of trees it was $2.15^{\circ}C$. In terms of analysis of the relationship between the roadside green area structure and air temperature, for tree type, average air temperature $1.94^{\circ}C$: for tree+shrub type, average air temperature $2.49^{\circ}C$; for tree+mid-size tree+shrub type, average air temperature $2.57^{\circ}C$. That is, air temperature reduction was more effective in a multi-layer structure than a single layer structure. In the relationship analysis of green volume and air temperature reduction, the air temperature reduction effect was enlarged as there was a large amount of green volume. There was a relationship with the green volume of the road, the size of the tree and number of tree layers and a multi-layer structured form of planting. The canopy volume was large and there were a great number of rows of the tree layer and the plantation type of multi-layer structure, which is what is meant through a relationship with the green volume along the roadside. Green composition standards for air temperature reduction effects and functional improvement were proposed based on the result. For a pedestrian street width of 3m or less in the field being ideal, deciduous broadleaf trees in which the canopy volume is small and the structure of the tree+shrub type through the greatest 1m green bend were proposed. For a pedestrian street width of over 3m, deciduous broadleaf trees in which the canopy volume is large and is multi-layer planted with green bend over 1m, tree+mid-size tree+shrub type was proposed.

A Practical standard Air Flow Generator System to Calibrate and Compare Performance of Two Different Respiratory Air Flow Measurement Modules (호흡기류 계측모듈의 교정과 성능 비교를 위한 실용적인 표준기류 생성 시스템)

  • Lee, In-Kwang;Park, Mi-Jung;Lee, Sang-Bong;Kim, Kyoung-Ok;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.115-122
    • /
    • 2015
  • A standard air flow generator system was developed to generate air flows of various levels simultaneously applied to two different air flow transducer modules. Axes of two identical standard syringes for spirometer calibration were connected with each other and driven by a servo-motor. Linear displacement transducer was also connected to the syringe axis to accurately acquire the volume change signal. The user can select either sinusoidal or square waveform of volume change and manually input any volume as well as maximal flow rate levels ranging 0~3 l and 0~15 l/s, respectively. Various volume and flow levels were input to operate the system, then the volume signal was acquired followed by numerical differentiation to obtain the air flow signal. The measured volumes and maximal air flow rates were compared with the user input data. The relative errors between the user-input and the measured stroke volumes were all within 0.5%, demonstrating very accurate driving of the system. In case of the maximal flow rate, relatively large error was observed when the syringe was driven very fast within a very short time duration. However, except for these few data, most measured flow rates revealed relative errors of approximately 2%. When the measure and user-input stroke volume and maximal flow rate data were analyzed by linear regression analysis, respectively, the correlation coefficients were satisfactorily higher than 0.99 (p < 0.0001). These results demonstrate that the servo-motor controls the syringes with enough accuracy to generate standard air flows. Therefore, the present system would be very much practical for calibration process as well as performance evaluation and comparison of two different air flow transducer modules.

Esophageal Air in Patients with Globus Pharyngeus (인두 이물감을 호소하는 환자에서 식도 내 공기에 대한 연구)

  • Shim, Ye Ji;Nam, Dongwoo;Kim, Bo Hae;Jin, Young Ju;Ryu, Yoon-Jong;Kim, Min-Su;Chung, Eun-Jae;Kwon, Seong Keun;Hah, J Hun;Kwon, Tack-Kyun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.2
    • /
    • pp.127-129
    • /
    • 2015
  • Background and Objectives : The etiology of globus pharyngeus remains uncertain. It has been known there is a relationship between the presence of air bubbles in esophagus and GERD symptoms. The aim of this study is to identify relationship between the globus symptom and the presence of air column in esophagus. Subjects and Methods : The study population consisted of 46 patients who underwent CT scan as part of evaluation for globus. Controls were chosen from the population consisted of patients with lymphadenopathy who underwent CT scan. The correlation between the presence of globus symptom and diameter, volume, and position of the air column was assessed using t-test. Reproducibility of diameter and volume of the esophageal air column was analyzed using intraclass correlation coefficient. Results : In study group, the mean volume of the air column was $769.56{\pm}983.08mm^3$, the mean diameter was $8.24{\pm}4.90mm$, the mean distance from the inferior border of posterior lamina of cricoid cartilage was $88.86{\pm}28.01mm$. In control group, $682.18{\pm}767.28mm^3$, $8.37{\pm}5.50mm$, $88.34{\pm}21.06mm$, respectively. There were no differences of diameter, volume and distance of the air column between the two groups. We failed to obtain acceptable reliability when we compare the diameter and the volume of the esophageal air column. Conclusion : There was no relationship between air column of esophagus and presence of globus symptom. And the measurement of diameter and volume of the esophageal air column change over time and it should be considered in a further study.

  • PDF

Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel (교통환기력에 의한 터널내 환기량 추정에 관한 연구)

  • 김종호;이상칠;도연지;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.