• Title/Summary/Keyword: Air vent

Search Result 162, Processing Time 0.03 seconds

Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming (판재성형 해석시 금형내의 공기거동 모델링)

  • Choi, Kwang-Yong;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

Analysis on Internal Airflow of a Naturally Ventilated Greenhouse using Wind Tunnel and PIV for CFD Validation (CFD 검증을 위한 풍동 및 PIV를 이용한 자연환기식 온실 내부 공기유동 분석)

  • Ha, Jung-Soo;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.391-400
    • /
    • 2014
  • The number of large scale greenhouses has recently been increasing to cope with mass consumption of agricultural product. Korean government announced a new development plan for constructing greenhouse complex in reclaimed lands for the purpose of improvement in exports and activation of domestic market of agricultural product. Wind environment in the reclaimed land is totally different from that of inland area, and it can give a strong influence on ventilation performance of naturally ventilated greenhouse facilities. In this study, internal airflow analysis of naturally ventilated greenhouse built on a reclaimed land was conducted using wind tunnel and PIV for validation research. Later, the PIV measured results will be used to improve the accuracy of 3 dimensional CFD simulation in the future. Wind profile at a reclaimed land was produced using ESDU program and it was applied to the wind tunnel. The calculated error was only 5% and 0.96 of correlation coefficient, implying that the computed profiles were designed properly. From the measured results, when external wind speed changed from $1m{\cdot}s^{-1}$ to $1.5m{\cdot}s^{-1}$, air velocities inside the greenhouse which PIV measured were also increased proportionately in case of both side vent open and side-roof vent open. Considering reduced ratio of air velocity inside the greenhouse, it was measured a minimum of 40% in case of side vent and 30% in case of side-roof vent compared with external wind speed from each vent type. From the quantitative and qualitative PIV analysis, the PIV measured results indicated that there were well ventilated and stagnant areas in the greenhouse according to external wind condition as well as ventilation design.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Sanitary Plumbing System Design of High-rise Building (초고층 건축물의 위생설비 시스템 설계)

  • Ju, Duck-Hoon;Byun, Woon-Seob;Yun, Hae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.491-496
    • /
    • 2009
  • Recently, the high-rise building has been constructed competitively because it is symbol of the national competitive power including the technical power. The higher buildings are getting, the more important building mechanical systems are. So, the building mechanical systems are getting developed. Among the building mechanical systems, the sanitary system is basically necessary in order to maintain the building hygienically along with convenience and safety. This study has been investigated for various cases of high-rise building plumbing system. As a result, a variety of zoning method has been applied to most skyscrapers depending on the building height in the building mechanical system. And a variety of joint have been applied to minimize the Shortening and Sway. Also, the drainage in same uses has been discharged outside of a build through the one vertical pipe line. And airing system has been used like Individual Vent Pipe Yoke Vent Pipe Stack Vent Pipe Loop Vent Pipe Relief Vent Pipe method. It is sure that this study could be used as the high-rise building design.

  • PDF

A Study on the Air-Vent System of Complex Layer Applied Poly-Urethane Waterproofing Material and Air-Permeability Buffer Sheet (절연용 통기완충 시트와 폴리우레탄 도막 방수재를 복합 적층한 탈기 시스템에 관한 연구)

  • Oh, Sang-Keun;Park, Bong-Kyu;Ko, Jang-Ryeol;Park, Yoon-Chul;Kim, Su-Ryon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This study deals with the characterizing and the application like as insulation materials in the joint part in concrete surface layer and waterproofing sheet especially for roof slabs. Using steel materials and butil-rubber tape to band waterproofing sheet and concrete surface together before this waterproofing system will be applied. It can be expected to both the curability and the watertightness by coating poly-urethane 2 or 3 times with sheet surface. Therefore this waterproofing system can be possible to protect water without the damage when vapor is going out from concrete and without air pockets because of the difference temperature inside and out. This system particularly consists of air bents and elastic waterproofing sheet considering the physical damage while water can cause purely physical damage. This system is one of the most efficient ways of waterproofing system without air pocket.

Sprue design and its effect on the castability of ceramonetal nonprecious alloys (주입선의 설치방법이 금속의 주조성에 미치는 영향에 관한 실험적 연구)

  • Kim, Uoong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.10 no.1
    • /
    • pp.5-10
    • /
    • 1988
  • The purpose of this study was to evaluate the effect of spure designs and air vent on the relative castability of the nonprecious alloys, commonly used to make ceamometal restorations. Samples of total 30 were constructed and devided into 6 groups according to two variables, sprue design and air bent. The total number of completly cast squares was counted, verified, and recorded. The results obtained were as follows: 1. The runner bar or Rousseau designs yield better castability than reservoir design(P<0.1) 2. When the air vent was attached, only the castability of reservoir design was significantly different from runner bar or Rousseau designs.

  • PDF

A Study on Numerical Calculation of Gas Migration from the Sanitary Landfill (쓰레기 매립지에서 가스유출 계산에 관한 연구)

  • 이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.43-51
    • /
    • 1998
  • This study presents a numerical method for calculating gas flow around a sanitary landfill gas vent, when gas flows by pressure. The method described is a three-dimensional compartmental model and includes methods to determine the dimensions for the model. Using the numerical method, controll of press and gases flowing out to the air through final cover soil, and degine of sanitary landfill gas vents.

  • PDF

A Computational Study of Flowfield for a Vent Mixer in Supersonic Flow (초음속 유동장 내 벤트 혼합기에 관한 수치해석 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2008
  • To improve the mixing efficiency and to reduce the pressure loss, it is needed to develope a new mixing device for supersonic combustion. The vent mixer is introduced as the new supersonic fuel-air mixer. Computational analyses, that include pressure profile, density contour, and streamline tracing, have been carried out. The expansion wave generates at the end of the extended upper wall of the mixer. And it reduces the shock wave from the hole. Incoming air flow through the hole makes several recirculation regions which increase the mixing efficiency, and the separation region at the downward wall expends the boundary layer which reduces the pressure loss.

Thermal and Fluid Analysis on Air Distribution in a Elevator Car (엘리베이터 카 내부 기류분포에 관한 열 유동해석)

  • Chung, Kyung Taek;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.