• Title/Summary/Keyword: Air velocity

Search Result 2,860, Processing Time 0.034 seconds

A Survey for the Air Treatment System according to the Position of HVAC and the Feature of Air Duct Structure in the Train (철도 차량의 HVAC 위치에 따른 공기조화 시스템 및 Air Duct 구조의 특성에 관한 고찰)

  • Jung, Hwa-Sic;Park, Jae-Hong;Yeom, Gyu-Hak
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1330-1335
    • /
    • 2007
  • The HVAC and the air duct is to make optimal indoor environment. By the HVAC position, method and the air duct construction, the important elements can affect on cooling performance, passengers' convenience, and energy efficiency. According to this, there are features, such as the indoor temperature distribution, cooling performance, velocity distribution from diffuser, tend to be come out variously. Also, comparing and analysing temperature distribution, cooling performance, air velocity, noise based on the real practical vehicle tests, it shows features in detail. Besides, it can lead to make design the system of HVAC & air duct effectively.

  • PDF

An Experimental Study on the Characteristics of Train-Wind in Underground Shopping Center Connected to Subway Station (지하도 상가와 지하 역사 연계구에서 열차풍 발생 특성에 관한 실험적 연구)

  • Hwang, In-Ju;Lee, Hong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.82-87
    • /
    • 2005
  • The characteristics of train-wind in the underground shopping center(UGSC) connected to subway station is investigated by field measurement for the case of train movement such as arrival and departure, etc. Also air curtain installed at the pass way between underground shopping center and subway station were considered as the parameter in order to analysis the effect on indoor air quality and thermal condition. The measurement data such as velocity, relative humidity, wind-pressure were plotted as quantity variation with time scale. The train-wind affected wind velocity, air pressure and relative humidity at the connecting area of underground shopping center and subway station, and the variation was about 4.5 m/s, 8%, 40 Pa. Also the result showed that the air curtain is not proper to reduce influence of train-wind

  • PDF

Performance Analysis of Fin-tube Evaporator for Carbon Dioxide (이산화탄소용 핀-관 증발기의 성능해석)

  • 이민규;김영일;장영수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.645-651
    • /
    • 2004
  • Fin-tube evaporator for carbon dioxide has been investigated both by experiment and simulation. Inside refrigerant heat transfer and outside heat and mass transfer of a wet surface heat exchanger were modeled using appropriate correlations. The results estimated by the calculation were in good agreement with the experimental results. The simulation errors were less than 7.9% for estimating capacity, 0.6$^{\circ}C$ for air exit temperature, 1.2% for air exit humidity and 17% for $CO_2$ exit pressure. The simulation program was used to study the effect of air flow direction, number of rows and refrigerant circuits. For a 2-row evaporator, parallel flow showed better performance for low air velocity but for high air velocity, counter-flow was better. Refrigerant circuits, however, showed insignificant effect on the performance.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

A numerical study on the performance of a heat pump assisted dryer (열펌프 건조기의 성능에 관한 수치해석)

  • Kim, I.G.;Park, S.R.;Koh, J.Y.;Kim, Y.J.;Kim, J.G.;Yim, C.S.
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.91-104
    • /
    • 1998
  • This study carried out a numerical analysis on a heat pump assisted dryer using HFC134a. Under the constant degree of superheat and that of subcooling, we analyzed the performance of heat pump assisted dryer with varying an air mass velocity, bypass air ratio, compressor speed and an inlet bulb temperature of dryer. Simulation results were compared with experimental results, so they were maximally agreed in the range of 10%. There was the proper bypass air ratio with varying an air mass velocity. As for the effect of SMER having the inlet temperature $35^{\circ}C$ and compressor speed 1360rpm, bypass air ratio was 30% at the front velocity 0.5kg/s, 40% at the front velocity 0.7kg/s and 50% at the front velocity 0.9kg/s and 1.1kg/s. As the compressor speed was increased, SMER decreased and COP increased. As the inlet bulb temperature was increased, SMER and COP decreased.

  • PDF

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.

Evaluation of Thermal Performance for Air-Barrier Air-conditioning System in Perimeter Zone by Scale Model Experiment and Simulation (모델실험 및 수치해석을 통한 페리미터존 에어배리어 공조방식웨 열성능 평가)

  • Ham Heung-Don;Park Byung-Yoon;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.947-955
    • /
    • 2005
  • For the purpose of evaluating the thermal performance for air-barrier air conditioning system in perimeter zone, two air-conditioning systems, conventional perimeter air-conditioning system and air-barrier system, are evaluated and compared by scale model experiment and simulation during cooling season. As a result, measurement shows that supply air velocity of 1 m/s in the upstream direction at perimeter is more effective. Air-barrier system could reduce the cooling energy by $10\sim20\%$ compared with conventional system. Numerical simulation was carried out considering solar effect for reliable result. This method has improved the accuracy of numerical simulation for the space affected by the solar radiation. Both measurement and simulation results show that supply air velocity of 1 m/s at perimeter is the most effective.

Performance of Downward-blowing Air Curtain m Heating Space Considering External Wind Condition (외부바람의 영향을 고려한 난방공간에서의 하향토출 에어커튼의 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.417-423
    • /
    • 2009
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. Design data for the air curtain given by previous researchers do not mention the influence of wind speed. Thus, this paper presents a performance of single jet air curtain in heating space when the wind blows toward the opening space of the building. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A new safety factor is also proposed for determination of air curtain jet velocity under the various wind conditions.

Study on Combustion Performance and Burning Velocity in a Micro Combustor (초소형 연소기에서 연소성능과 연소속도에 대한 연구)

  • Na Hanbee;Lee Dae Hoon;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.