• Title/Summary/Keyword: Air velocity

Search Result 2,860, Processing Time 0.033 seconds

Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV (LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성)

  • Yun, Seok-Ju;Lee, Haeng-Nam;Sohn, Hyun-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (I): Development of Image Processing Method and Statistical Analysis (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (I): 영상처리 및 통계적분석방법 개발)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Minkyun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.48-58
    • /
    • 2017
  • To analyze bubbles generated by an ABB (Air Bubble Barrier), we developed image processing procedure and statistical analysis method. Air was discharged from 5 mm nozzle as swarm form at the bottom of 1 m3 water tank. Flow rates of discharged air are ranged from 2 L/min to 20 L/min and these are corresponding to Reynolds number of 1766-17663. Rise velocity of bubble is extracted by using image process pretending intrusive method. Mean equivalent velocity was calculated using void fraction weighting factor. Bubble diameter is obtained and compared with correlations in the literature. Also, we present a correlation according to the result of this study. Mean velocity and mean diameter of bubbles increase with increasing gas Reynolds number. But these parameters show an asymptotic trend when they approach to high Reynolds number.

A large scale model test to investigate the pressure drop and heat transer characteristics in the air side of two-row heat exchanger (2열 휜 튜브 열교환기의 공기측 압력강하 및 열전달 특성을 고찰하기 위한 확대 모형실험)

  • Gang, Hui-Chan;Kim, Mu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.113-124
    • /
    • 1997
  • This work is performed to investigate the pressure drop and heat transfer characteristics in the air side of finned-tube heat exchanger for air conditioner. Experimental apparatus and method are described to simulate the heat exchanger performance by using the three times enlarged model. The pressure drop and heat transfer coefficient were measured and compared for the heat exchangers with a plane fin and a commercial strip fin. The measured data for the strip fin agree well with those of prototype within a few percentages. For the plane fin, the measured data had similar trend to Gray & Webb's correlation at high air velocity, however a new correlation is needed to give more accurate prediction at low air velocity. It is found that most heat was transferred around the front row of the two-row heat exchanger, and the ratio of thermal load at the front tube row was increased for decreasing air velocity.

Separation Performance of Zigzag Air Classifier

  • Hirajima, Tsuyoshi;Nishida, Takuji;Toshima, Ryutaro;Kataoka, Kenji;Tsunekawa, Masami;Asakura, Kuniomi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.759-764
    • /
    • 2001
  • The separation performance of zigzag air classifier with angle of 90 degrees was studied using narrow size fractions of thin square samples and granular samples. The simulation results of air velocity inside the classifier indicated that the zigzag geometry induces a new pattern consisting of an upward flow and a circulation flow, Experimental results showed that overflow product recovery was described as an integral calculus of normal distribution as a function of dimensionless air velocity ( $V_{A}$ $V_{A50}$), where $V_{A}$ is superficial air velocity and $V_{A50}$ is the $V_{A}$ at the fifty percent recovery. The $V_{A}$ values were predicted using the equations derived from dynamics for a particle dropping in air. A monitoring system that utilizes changes in acoustic signals emitted during the process of air classification was developed to separate PET with desired recovery or grade. The technical feasibility of the on-line monitoring of the PET recovery and grade was demonstrated by measuring relative energy of the signals.signals.als.

  • PDF

Air Side Heat Transfer Charactieristics of Tension Wound Transverse Fin with Minichannel (장력 감김으로 부착된 가로방향 휜-미니채널의 공기측 열전달 특성)

  • Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.701-706
    • /
    • 2005
  • Pipes, tubes. and tubular sections with external transverse high fins have been used extensively for heating cooling, and degumidifying air and other gases. This work was performed to investigate an air side heat transfer charactieristics of minichannel with tension wound transverse fin. This estimate was confirmed conversion heat capacity the air side surface area enlargement and heat transfer charactieristics performed available inlet tube side hot water mass flux or outlet tube side air frontal air velocity. The most suitable tension wound transverse finned minichannel was measured extremely low in air side pressure drop and fin effectiveness $3.3\~4.4$. The pressure drop $0.9\~2.8Pa$ was ranged frontal air velocity $0.5\~1.2m/s$. It is also appeared that heat transfer in air side could be better conversion heat area which has been increased $330\%$ of heat capacity compared with the bare tube.

A Study on the Comparison of Thermal Comport Performance Indices for Cooling Loads in the Classroom (학교건물에서 냉방부하에 따른 열적 쾌적성 평가지표 비교 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1274-1279
    • /
    • 2004
  • We performed the numerical study on the comparison of thermal comport performance indices for cooling loads in the classroom when the 4-way cassette air-conditioner is mounted on the ceiling. We investigated the velocity and the temperature distribution of the classroom as with respect to the variation of the air diffusion angle of the air-conditioner. Air diffusion performance index and Predicted mean vote were used for analyzing the characteristics of the thermal comport in the classroom and comparing their values each other. From the numerical results, we knew that the thermal comport is largely affected by the air diffusion angle and velocity of the air-conditioner. And we also found out that the qualitative tendency of the distribution between Air diffusion performance index and Predicted mean vote is very similar in all occupied zone.

  • PDF

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Experimental and CFD Simulations of Polluted Air Behavior in Rectangular Tunnels

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.608-615
    • /
    • 2011
  • The objective of this study is to investigate the flow characteristics of polluted air behavior in rectangular tunnels using a PIV system and a commercial CFD program. The PIV experiments are simulated by using the olive oil as the tracer particles in scaled rectangular tunnels. Each model has one of four different outlet vents, each dimensionless L/H ratio of which is 0, 0.375, 0.75 and 1.125, respectively as the locations of each outlet are away from the vertical centerline through the inlet. A commercial CFD program, ANSYS CFX, was used to examine the velocity fields and the pressure distributions in numerical simulations. The kinematic viscosity of the air flow of $1.51{\times}10^{-5}m^2/s$ and the flow velocity of 0.3 m/s at the inlet are given under the same conditions in order to analyze the polluted air flow characteristics experimentally and computationally. This study is considered to examine the effect of the outlet locations in the naturally ventilated tunnel models.

An experimental study on the behavior of fuel flow in intake manifold by the model (모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구)

  • 박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

Guided wave analysis of air-coupled impact-echo in concrete slab

  • Choi, Hajin;Azari, Hoda
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2017
  • This study aims to develop a signal processing scheme to accurately predict the thickness of concrete slab using air-coupled impact-echo. Air-coupled impact-echo has been applied to concrete non-destructive tests (NDT); however, it is often difficult to obtain thickness mode frequency due to noise components. Furthermore, apparent velocity in concrete is a usually unknown parameter in the field and the thickness of the concrete slab often cannot be accurately measured. This study proposes a signal processing scheme using guided wave analysis, wherein dispersion curves are drawn in both frequency-wave number (f-k) and phase velocity-frequency ($V_{cp}-f$) domains. The theoretical and experimental results demonstrate that thickness mode frequency and apparent velocity in concrete are clearly obtained from the f-k and $V_{cp}-f$ domains, respectively. The proposed method has great potential with regard to the application of air-coupled impact-echo in the field.