• Title/Summary/Keyword: Air tubes

Search Result 495, Processing Time 0.021 seconds

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces (응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험)

  • Park Chan-Hyoung;Lee Young-Su;Jeong Jin-Hee;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.

Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes (낮은 핀관에서 대체냉매의 풀비등 열전달계수)

  • 송길홍;이준강;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

Delayed Hydride Cracking Velocity of CANDU Zr-2.5Nb Tubes in High Temperature Water

  • Kim Young Suk;Cho Sun Young;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.206-213
    • /
    • 2003
  • This study focuses on an understanding of the environmental effect on delayed hydride cracking velocity (DHCV) of CANDU Zr-2.5Nb tubes. To simulate DHC susceptibility of the Zr-2.5Nb tubes in reactor operating conditions, DHC tests were successfully carried out in pressurized water at 180 and $250^{\circ}C$ using a self-designed autoclave for the first time. Using 17 mm compact tension specimens electorlytically charged to 34 and 60 ppm H, 3 to 7 DHCV data were determined in water at both temperatures and compared to those determined in air that were already confirmed to be valid through a round robin test on DHCV of Zr-2.5Nb tubes sponsored by a IAEA coordinated research program. The pressurized water environment has little effect on DHCV of Zr-2.5Nb tube in water at both temperatures even though DHCV is slightly lower in water than that in air. The lower DHCV of the Zr-2.5Nb tube during short-term tests is discussed in viewpoint of the cooling rate from the peak temperature to the test temperature.

Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes (작은 수직관을 흐르는 기-액 슬러그 유동의 유동특성)

  • Kye, Seok-Hyun;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.246-254
    • /
    • 2013
  • Some characteristics of nitrogen-water slug flow were optically measured, in vertical acrylic tubes of 2, 5 and 8 mm diameter. Bubble velocity, bubble and unit cell lengths were measured, by analyzing the light intensity signals from two sets of dot laser-infrared sensor modules mounted along the transparent tubes. Optical images of the bubbles were also taken and analyzed, to measure bubble shapes and liquid film thickness. It was found that the measured bubble velocities were in good agreement with the empirical models in the literature, except for those measured under high superficial velocity condition in the 2 mm tube. Bubble length was found to be the longest in the 2 mm tube, being 4 to 5 times those of the other tubes. Liquid film was found to have developed early in the 2 mm tube, which made the blunt shape of the bubble head. Liquid film thickness in the 8 mm tube was measured at almost twice those of the other tubes.

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

Stabilization Characteristics of DME-Air Diffusion Flames Depending on the Configuration of the Fuel-Air Tubes in Half Closed Combustion Spaces (반밀폐 연소공간 내 동축관 형상에 따른 DME-공기 확산화염의 안정화 특성)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.916-923
    • /
    • 2009
  • The effects of configuration of fuel and air tubes on the flame stabilization were experimentally investigated in half-closed combustors. Flame behaviors and stabilities of methane, propane, and DME flames were compared by changing tube diameters and the locations of the fuel and air tubes. It was found that flammability limits are significantly affected by the outlet boundary condition, which disturbs compositions of burned and unburned mixtures near the flame base. And it was found that there exist critical inner tube heights, over which flame stability is determined only by the fuel flow rate. Conclusively, flame stabilization is governed by the flame propagation velocity in an ordinary mixing flow and the non-uniform mixture concentration in the combustion space which is affected by flow recirculation and the combustor configuration. The compositions of $NO_x$ and CO were compared to know basic characteristics of methane, propane, and DME flames.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

Numerical Simulation Model of Alternative Refrigerants Flow Through Capillary Tubes (대체냉매의 모세관내 유동 시뮬레이션)

  • 장세동;노승택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • A numerical model of refrigerant flow through a capillary tube is developed, which considers the effects of underpressure for vaporization, kinetic energy, and roughness of capillary tube. The numerical model is based on homogeneous flow assumptions for the two-phase flow region. A characteristic chart of HFC refrigerants flow through capillary tubes and correction factor chart of geometry and relative roughness of capillary tube to select a proper capillary for refrigerating machines using alternative refrigerants is presented by this numerical model.

  • PDF

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 성능)

  • Choi, Byung-Nam;Yi, Fung;Sim, Hyun-Min;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.279-288
    • /
    • 2013
  • Heat transfer and pressure drop characteristics of fin-and-tube heat exchangers having sine wave fins and oval tubes were investigated. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7 mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. The effect of fin pitch on the j and f factors was negligible. The effect of the tube row on the j factor, however, was different from that of common fin-and-tube heat exchangers having plain fins and round tubes. The highest j factor was obtained for a two-row configuration, while the lowest one was obtained for a one-row configuration. A possible reason was attributed to the flow mixing characteristics of the sine wave channel of the present geometry. Comparison with a plain fin-and-tube heat exchanger having 15.88 mm O. D. round tube reveals that the present oval fin-and-tube heat exchanger shows generally superior thermal performance, except for the one-row configuration.