• Title/Summary/Keyword: Air to water

Search Result 6,142, Processing Time 0.032 seconds

Viability of HVAC System for Energy Conservation in High Density Internal-load Dominated Buildings (고밀도 내부부하 중심 건물의 에너지 절약적 공조방식에 대한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.530-537
    • /
    • 2010
  • With the advancement of technology, the density of IT equipment, heat load and power consumption continue to increase in high density internal-load dominated buildings as datacenters. To improve the HVAC system's energy performance and efficiency, there is a need to find methods of using outside air. Through cooling tower control that is based on outside wet-bulb temperature, the water-side economizer made it possible to achieve a maximum energy performance improvement of about 16.6% over the basic chilled water system, whereas the air-side economizer, through control based on outdoor air enthalpy, made it possible to achieve about 42.4% improvement.

A Study on Thermal Analysis for a Data Center Cooling System under Fault Conditions at a Chilled Water Plant (비상시 열원중단에 따른 데이터센터의 냉각시스템 열성능 평가에 관한 사례연구)

  • Cho, Jinkyun;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.178-185
    • /
    • 2016
  • This study describes the analysis of a 20 MW chilled water plant used for the IT cooling of a recently constructed data center in Korea. The CFD model was developed with the aim of evaluating the impact of problems such as chiller failure on the water and air temperatures in the cooling system. The numerical model includes the chilled water hydraulic network and individual water-to-air CRAC units. The coupling between the IT server room air temperature levels and the cooling plant has enabled a full assessment of the cooling system design in response to system fault conditions to be performed. The paper examines an emergency situation involving the failure of the cooling plant, and shows how the inherent thermal inertia of the system along with additional inertia achieved through buffer systems allowed a suitable design to be achieved.

Building a Nonlinear Relationship between Air and Water Temperature for Climate-Induced Future Water Temperature Prediction (기후변화에 따른 미래 하천 수온 예측을 위한 비선형 기온-수온 상관관계 구축)

  • Lee, Khil-Ha
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.21-38
    • /
    • 2014
  • In response to global warming, the effect of the air temperature on water temperature has been noticed. The change in water temperature in river environment results in the change in water quality and ecosystem, especially Dissolved Oxygen (DO) level, and shifts in aquatic biota. Efforts need to be made to predict future water temperature in order to understand the timing of the projected river temperature. To do this, the data collected by the Ministry of Environment and the Korea Meteororlogical Administration has been used to build a nonlinear relationship between air and water temperature. The logistic function that includes four different parameters was selected as a working model and the parameters were optimized using SCE algorithm. Weekly average values were used to remove time scaling effect because the time scale affects maximum and minimum temperature and then river environment. Generally speaking nonlinear logistic model shows better performance in NSC and RMSE and nonlinear logistic function is recommendable to build a relationship between air and water temperature in Korea. The results will contribute to determine the future policy regarding water quality and ecosystem for the decision-driving organization.

  • PDF

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

EXPERIMENTAL STUDY OF TURBULENCE MANIPULATION IN STEPPED SPILLWAYS. IMPLICATIONS ON FLOW RESISTANCE IN SKIMMING FLOWS

  • GONZALEZ CARLOS A.;CHANSON HUBERT
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09a
    • /
    • pp.588-589
    • /
    • 2005
  • Current expertise in air-water turbulent flows on stepped chutes is limited to laboratory experiments at low to moderate Reynolds numbers on flat horizontal steps. In this study, highly turbulent air-water flows skimming down a large-size stepped chute were systematically investigated with a $22^{\circ}$ slope (Fig. 1). Turbulence manipulation was conducted using vanes or longitudinal ribs to enhance interactions between skimming flows and cavity recirculating regions (Fig. 2). Systematic experiments were performed with seven configurations. The results demonstrated the strong influence of vanes on the air-water flow. An increase in flow resistance was observed consistently with maximum flow resistance achieved with vanes placed in a zigzag pattern.

  • PDF

Effect of Temperature and Immersion Time on the Environmental Adhesive Strength of Adhesively Bonded Joints of Rolled Steel Sheet (압연강판 접착제 접합부의 환경 접합강도에 미치는 온도 및 침수시간의 영향)

  • Song, Jun-Hee;Lee, Hee-Jae;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2662-2669
    • /
    • 2002
  • Recently structural applications of adhesive bonding method have been increased extensively in automobile industry. Adhesively-bonded joints which are used in automobile field are exposed to various environmental conditions. In this study, several environmental factors were concerned to evaluate their effects on the adhesive strength such as air temperature, water temperature, exposed time in water. The specimens are exposed for 1, 10 and 100 hours at various air temperatures to evaluate the effects of the air and water temperature on the adhesive strength. It is proved that the adhesive strength decrease with rising the air and water temperature, and the adhesive strength decrease steeply at the higher temperature with increasing the exposure time in water.

Evaluation of Energy Consumption of HVAC System for Air Filter Pressure Difference Change in Commercial Buildings (공조설비의 필터차압 변화에 따른 에너지 소비성능 평가)

  • Won Keun-Ho;Kwak Ro-Yeul;Huh Jung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1227-1233
    • /
    • 2004
  • Air handling unit (AHU)'s air filter pressure difference is important for energy consumption and indoor air quality. Both energy Performance data and air filter differential pressure of AHU in real office buildings were monitored and analyzed to investigate quantitatively energy impact as dust buildup level on air filter grows. We also modeled and simulated CAV system using HVACSIM+ program to examine the energy effect of dust buildup on filters. Through analysis of time series pressure drop data, the filter pressure difference rate has been increased due to cumulative supply air flow rate increase. As filter pressure drop increased to 1 inch water column, it is found that the supply air flow rate was decreased by 10%, the chilled water flow rate was increased by 5.9% and the pump energy consumption was increased to 5.9%.

A Study on Optimizing Drying Performance of Air Dryer (에어 드라이어 제습성능 최적화 프로그램 개발)

  • Park, Won-Ki;Lee, Hi-Koan;Yang, Gyun-Eui;Mun, Sang-Don
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • Compressed air represents an energy source and an force-transmission medium for brake systems on medium-heavy and heavy-duty commercial vehicles. However, one disadvantage is the tendency of air to absorb moisture in the form of water vapor. This water vapor condenses once the air, which is heated during compression, cools back to ambient temperature upon emerging from the air compressor. The resulting condensation assumes the form of moisture in pneumatic lines, air tanks, cylinders and valve assemblies and can have negative consequences for the brake system and vehicle safety. The pneumatic systems on today's vehicles are equipped with air dryers, in which the supplied air is dried according to the adsorption principle. In the systems, the compressed air flows through a granular desiccant with molecular sieves which captures the water molecules.

The Prediction of Water Temperature at Saemangeum Lake by Neural Network (신경망모형을 이용한 새만금호 수온 예측)

  • Oh, Nam Sun;Jeong, Shin Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • The potential impact of water temperature on sea level and air temperature rise in response to recent global warming has been noticed. To predict the effect of temperature change on river water quality and aquatic environment, it is necessary to understand and predict the change of water temperature. Air-water temperature relationship was analyzed using air temperature data at Buan and water temperature data of Shinsi, Garyeok, Mangyeong and Dongjin. Maximum and minimum water temperature was predicted by neural network and the results show a very high correlation between measured and predicted water temperature.

A Study of Surge Pressure Absorption by Water Hammer Arrester in Water Supply Piping System (워터 햄머 흡수기의 압력흡수 효과에 관한 연구)

  • 이용화;유지오
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1066-1072
    • /
    • 2000
  • This study is to investigate the pressure wave characteristics and the absorption of maximum and minimum pressure generated by instantaneous valve closure at the end of the straightening copper piping system with and without a water hammer arrester. Experiments were conducted under the following conditions : initial pressure 1~5 bar, flow velocity 0.6~3.0 m/s, water temperature $20^{\circ}C$ and air volume of water hammer arrester $80~180^cm^3$. Experimental results show that the optimum air volume of water hammer arrester is 110㎤.

  • PDF