• Title/Summary/Keyword: Air temperature rising period

Search Result 19, Processing Time 0.03 seconds

Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas (산지계류의 계절적 수온변동 특성 및 영향인자 분석)

  • Nam, Sooyoun;Choi, Hyung Tae;Lim, Honggeun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

Climate Change Assessment on Air Temperature over Han River and Imjin River Watersheds in Korea

  • Jang, S.;Hwang, M.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.740-741
    • /
    • 2015
  • the downscaled air temperature data over study region for the projected 2001 - 2099 period were then ensemble averaged, and the ensemble averages of 6 realizations were compared against the corresponding historical downscaled data for the 1961 - 2000 period in order to assess the impact of climate change on air temperature over study region by graphical, spatial and statistical methods. In order to evaluate the seasonal trends under future climate change conditions, the simulated annual, annual DJF (December-January-February), and annual JJA (June-July-August) mean air temperature for 5 watersheds during historical and future periods were evaluated. From the results, it is clear that there is a rising trend in the projected air temperature and future air temperature would be warmer by about 3 degrees Celsius toward the end of 21st century if the ensemble projections of air temperature become true. Spatial comparison of 30-year average annual mean air temperature between historical period (1970 - 1999) and ensemble average of 6-realization shows that air temperature is warmer toward end of 21st century compared to historical period.

  • PDF

An Observational Study on the Temperature Rising Effects in Water Warming canal and Water Warming Pond (온수로 및 온수지에서의 수온상승효과에 관한 조사연구)

  • 홍종백;홍성범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18˚C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1.The degree of the rise of the water temperature can be decided by $\theta$x=$\theta$o +K L--v.h (T-$\theta$˚)Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2.A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was $\theta$x1 = 16.5 + 15.9(1-e -0.00018x), $\theta$x2 =18.8 + 8.4( 1-e -0.000298x)for the type I. and $\theta$x, = 19.6 + 12.8 ( 1-e -0.00041x) for the type II. 3.It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4.In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made ;Y= 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5.A monthly variation of the water temperature in the water warming canal was the highest in August during the irrigation period and the water temperature rose with the air temperature until August. However, it was blunted after then. 6.A rising degree of water temperature of the practical value in the water warming pond was higher than that of the theoritical equation by 69% for the type I. and 57% for the type II. Accordingly, it was possible to acquire the result near the practical value.$\theta$w-$\theta$o=[1-exp{ -h(1+2$\psi$) . X($\theta$w-$\theta$0)XC Here, C values are 1.69 for the type I. and 1.57 for the type II. 7.It was shown that the effect of the rise of water temperature was favorable when the thermal absorption was to be good by coloring the surface of the water warming pond and removing the bottom osmosis. 8.By enlarging the surface of water in comparison with the depth, and by having dead area of water in the water warming pond, this structure in the water warming pond is helpful for the rise of water temperature.

  • PDF

Correlation and Hysteresis Analysis of Air-Water Temperature in Four Rivers: Preliminary study for water temperature prediction (우리나라 하천의 기온-수온의 상관관계 및 이력현상 분석: 미래 하천수온 변화 예측을 위한 사전검토)

  • An, Ji-Hyuck;Lee, Khil-Ha
    • Journal of Environmental Policy
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2013
  • The potential impact of water temperature on air temperature in response to recent anthropogenic global warming has been noticed. To predict climate, induced change in river aquatic environment, it is necessary to understand the thermal constrains of fish species and the timing of the projected river temperature. As a preliminary study, air-water temperature relationship was analyzed on the basis of the observed data during the time period of 2009-2011 and the number of data corresponds to 873-1083. As a result of analyzing the auto-and cross-correlation coefficient between air-water temperature, high correlation is shown (~0.9). It is also found that the correlation coefficient of air temperature is higher than that of water temperature at the lag time less than approximately 10 days. Observed data was divided into two groups to investigate hysteresis: rising limb and falling limb. For some stations there is strong evidence that hysteresis exist between air-water temperature relationships. Consequently it is recommended that seasonal hysteresis needs to be included in determining an airwater relationship.

  • PDF

A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool. (온수지에 의한 관개용수의 수온상승 효과에 관한 연구)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

Characteristics of Climate Change in Sowing Period of Winter Crops (최근 동계작물의 파종기간 동안 기후변화 특징)

  • Shim, Kyo Moon;Kim, Yong Seok;Jeong, Myung Pyo;Choi, In Tae
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2015
  • This study was conducted to provide the agricultural climatological basic data for the reset of sowing period of the winter crop on the double cropping system with rice. During the past 30 years from 1981 to 2010, mean air temperature has risen by $0.45^{\circ}C$ per 10 years (with statistical significance), while precipitation has decreased by 6.74 mm per 10 years and the numbers of days for precipitation has reduced by 0.23 days per 10 years (with no statistical significance) in the sowing period ($1^{st}$ Oct. to $5^{th}$ Nov.) of winter crop. It was analyzed that double cropping system of rice and winter crops need to be reset in the way of delaying the sowing time of winter crops, because rising trend of temperature was clear while variability of precipitation was great and the trend was not clear in the sowing period of winter crops. We have also analyzed the meteorological features of the sowing period of winter crops in 2014, and found that mean air temperature in 2014 was higher than that in normal years (similar to recent temperature change feature) while precipitation in 2014 was much more frequent than that in normal years (unlike recent precipitation features). Such tendency in 2014 made the sowing of winter crops difficult because mechanical sowing could not be worked in flooded paddy fields. Heavy rain in October 2014 was also analyzed as a rare phenomenon.

농업용수의 수온 상승에 관한 연구

  • Hwang, Eun;Kim, Cheol-Gyu;Lee, Sang-Beom
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.17-29
    • /
    • 1972
  • The persent study aims at finding out a means of prevention cool spell damages on the hilly areas. The irrigation plots of 24 hour stored water warm water way and warm water plots, cool water way are respectively established to find out water temperature and influnce on the growing rice plants. The results obtained are summed up as follows. 1. Warm water areas consisted of $5 m^2 Q=0.93 1{\ell}/sec$, V=31 cm/sec, S=1/1, 000, L=81.6m, B=5cm, h=6cm, t=4min 33sec, drops=9 areas, are constructed to help the water temperature of $14.5^{\circ}C$ rise to that of $21.6^{\circ}C$. This indicates lower temperature than $23^{\circ}C$ of critical water temperature in irrigation facilities by $1.45^{\circ}C$ and than $26.2^{\circ}C$ of balanced water temperature of Seoul arears by $4.6^{\circ}C$. But this does not give much influance on rice plant cultivation. 2. The rising of water temperature is influened according to the temperature, solar radiation but the water temperature changes according to the heat absorption of organized materials, weather and terraces. The difference of water temperature could be found in the first growing stage. 3. Through the warm water way of water rises to the temperature of $21.6^{\circ}C$ which also rises to the temperature of around $30^{\circ}C$ in the paddy field of submerged irrigation. The rice plants are comparatively free from prolonged cool damage, reproduction abstructive damage. 4. The water temperature in rice field in proportion to temperature influence of weather condition but the water temperature approaches to that of weather in the days of later growing stage and water temperature become lower than the air temperature in the fruit stage. 5. The water in the submreged field is $10^{\circ}C$ warmer than in the warm water way during the first growing stage period but the water temperature in the warm water way is warmer in the later growing stage period. The cool water of $14.5^{\circ}C$ is warmed to $30.1^{\circ}C$ and rice plants cultivation is free from other damages. 6. The 12% increased production or 570.98kg/10a is made cool water plot by rising the temperature of water from $14.5^{\circ}C$ to $21.6^{\circ}C$ making the water run through warm water way. 7. The damage inflicted by the cool water irrigation during the first growing stage period is the obstruction of peak tillering stage and the obstruction of heading the later growing stage period and the obstruction of fruiting and number of panides per fill.

  • PDF

A Study on the Combustion Characteristics in an Aero-Valved Pulsating Combustion System (空氣밸브型 脈動燃燒시스템의 燃燒特性에 관한 硏究)

  • 임광렬;오상헌;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.328-337
    • /
    • 1988
  • Experimental study was carried out to investigate the combustion characteristics of the hero-valved pulsating combustor with maximum operating capacity of 56kW. The pressure, the ion current, and the temperature fluctuations were simultaneously measured and statistically analyzed to identify the combustion process, the reignition and the mixing process of the reactants. It was found that the pulse combustion process was intermittent and the reignition of the reactants was caused by a direct contact and rapid mixing with the previous hot residuals. The analysis of the measured data indicated that the combustion process consisted of there stages in the combustion chamber; the preheating of the reactants in the vicinity of the air inlet pipe, the explosive combustion in the central region and the afterburning in the vicinity of the tailpipe. Wile the inflow of the fresh air occurred during the negative period of the pressure in the mechanical valved system, it occurred during the rising period of the pressure in the aero-valved system.

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

Variation Pattern Analysis on the Air and Surface Water Temperatures of the Yellow Sea Monitoring Buoy (황해중부부이에서 관측된 기온 및 표층수온의 변화양상 분석)

  • Cho, Hong-Yeon;Jeong, Jin-Yong;Shim, Jae-Seol;Kim, Seon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.316-325
    • /
    • 2010
  • Harmonic analyses are carried out in order to obtain the major frequency components of the air temperature (AT) and surface water temperature (SWT) data monitored in the Middle Area of the Yellow Sea (Yellow Sea monitoring buoy). The analysis shows the annual and semi-annual components are predominant and the higher frequency components are relatively weak with contribution to the short fluctuations, i.e. below $0.2{\sim}0.5^{\circ}C$, in the AT and SWT. The standard deviation of the AT residual is 2.4 times larger than that of the SWT residual and the occurrence frequency distributions of the AT and SWT residual components are both closely fitted to a normal-distribution function. The variation pattern on the AT-SWT plane forms the clear continuous hysteresis loop in anti-clockwise direction which is composed of the AT-SWT rising period, AT-SWT falling period, and the constant SWT period in winter season.