Browse > Article

Variation Pattern Analysis on the Air and Surface Water Temperatures of the Yellow Sea Monitoring Buoy  

Cho, Hong-Yeon (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research & Development Institute)
Jeong, Jin-Yong (Climate Change & Coastal Disaster Research Department, Korea Ocean Research & Development Institute)
Shim, Jae-Seol (Climate Change & Coastal Disaster Research Department, Korea Ocean Research & Development Institute)
Kim, Seon-Jeong (Climate Change & Coastal Disaster Research Department, Korea Ocean Research & Development Institute)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.22, no.5, 2010 , pp. 316-325 More about this Journal
Abstract
Harmonic analyses are carried out in order to obtain the major frequency components of the air temperature (AT) and surface water temperature (SWT) data monitored in the Middle Area of the Yellow Sea (Yellow Sea monitoring buoy). The analysis shows the annual and semi-annual components are predominant and the higher frequency components are relatively weak with contribution to the short fluctuations, i.e. below $0.2{\sim}0.5^{\circ}C$, in the AT and SWT. The standard deviation of the AT residual is 2.4 times larger than that of the SWT residual and the occurrence frequency distributions of the AT and SWT residual components are both closely fitted to a normal-distribution function. The variation pattern on the AT-SWT plane forms the clear continuous hysteresis loop in anti-clockwise direction which is composed of the AT-SWT rising period, AT-SWT falling period, and the constant SWT period in winter season.
Keywords
harmonic analysis; hysteresis loop; air temperature; surface water temperature; residual; Yellow Sea monitoring buoy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 이길하 (2007). 우리나라 연안 기온과 수온의 비선형 상관관계 분석, 한국해안해양공학회지, 19(2), 128-135.   과학기술학회마을
2 Choi, H. and Zhang, Y.H. (2005). Monthly Variation of Sea-Air Temperature Differences in the Korean Coast, J. of Oceanography, 61, 359-367.   DOI   ScienceOn
3 Emery, W.J. and Thomson, R.E. (2004). Data Analysis Methods in Physical Oceanography, Sec. 5.5, Elsevier.
4 Thomann, R.V. and Mueller, J.A. (1987). Principles of Surface Water Quality Modeling and Control, Chpater 9, Harper Collins Publishers.
5 이충일, 이종희, 김동선 (2007). 한국 서해에서 수온 및 염분에 미치는 기상인자의 영향, 해양환경안전학회, 13(1), 29-37.   과학기술학회마을
6 강용균, 서영상 (1986). 한반도의 이상기온과 인근해 이상수온과의 관계, J. of the Korean Meteorological Society, 22(3), 7-13.
7 조홍연, 이길하, 조경준, 김준성 (2007). 연안해역 기온과 수온의 상관관계 및 이력현상 분석, 한국해안해양공학회지, 19(3), 213-221.   과학기술학회마을
8 해양환경관리공단 (2010). 해양수질 자동측정망 http://tmsinfo. meis.go.kr.
9 Bloomfield, P. (2000). Fourier Analysis of Time Series, An Introduction, econd Edition, John Wiley & Sons, Inc.
10 Jorgensen, S.E., Halling-Sorensen, B. and Nielsen, S.N. (Editors) (1996). Handbook of Environmental and Ecological Modeling, Chapter 2, CRC Lewis Publishers.
11 愛知縣水産試驗場 (2010). 自動觀測ブイ情報 http://www.pref.aichi.jp/ suisanshiken/.
12 北川源四郞 (2005). 時系列分析入門, Sec. 5.3., 岩波書店(in Japanese).
13 심재설, 이동영, 김선정, 민인기, 정진용 (2009). 황해중부해역에서의 대형 해양관측부이의 운용, Ocean and Polar Research (Note), 31(4), 401-414.   과학기술학회마을   DOI   ScienceOn
14 김복기 (1983). 한국 연안 수온 및 기온의 주기분석과 상관분석, 한국해양학회지, 18(1), 55-63.