• 제목/요약/키워드: Air temperature rising period

검색결과 19건 처리시간 0.024초

산지계류의 계절적 수온변동 특성 및 영향인자 분석 (Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas)

  • 남수연;최형태;임홍근
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

Climate Change Assessment on Air Temperature over Han River and Imjin River Watersheds in Korea

  • Jang, S.;Hwang, M.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.740-741
    • /
    • 2015
  • the downscaled air temperature data over study region for the projected 2001 - 2099 period were then ensemble averaged, and the ensemble averages of 6 realizations were compared against the corresponding historical downscaled data for the 1961 - 2000 period in order to assess the impact of climate change on air temperature over study region by graphical, spatial and statistical methods. In order to evaluate the seasonal trends under future climate change conditions, the simulated annual, annual DJF (December-January-February), and annual JJA (June-July-August) mean air temperature for 5 watersheds during historical and future periods were evaluated. From the results, it is clear that there is a rising trend in the projected air temperature and future air temperature would be warmer by about 3 degrees Celsius toward the end of 21st century if the ensemble projections of air temperature become true. Spatial comparison of 30-year average annual mean air temperature between historical period (1970 - 1999) and ensemble average of 6-realization shows that air temperature is warmer toward end of 21st century compared to historical period.

  • PDF

온수로 및 온수지에서의 수온상승효과에 관한 조사연구 (An Observational Study on the Temperature Rising Effects in Water Warming canal and Water Warming Pond)

  • 홍종백;홍성범
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.31-38
    • /
    • 1990
  • The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18˚C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1.The degree of the rise of the water temperature can be decided by $\theta$x=$\theta$o +K L--v.h (T-$\theta$˚)Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2.A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was $\theta$x1 = 16.5 + 15.9(1-e -0.00018x), $\theta$x2 =18.8 + 8.4( 1-e -0.000298x)for the type I. and $\theta$x, = 19.6 + 12.8 ( 1-e -0.00041x) for the type II. 3.It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4.In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made ;Y= 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5.A monthly variation of the water temperature in the water warming canal was the highest in August during the irrigation period and the water temperature rose with the air temperature until August. However, it was blunted after then. 6.A rising degree of water temperature of the practical value in the water warming pond was higher than that of the theoritical equation by 69% for the type I. and 57% for the type II. Accordingly, it was possible to acquire the result near the practical value.$\theta$w-$\theta$o=[1-exp{ -h(1+2$\psi$) . X($\theta$w-$\theta$0)XC Here, C values are 1.69 for the type I. and 1.57 for the type II. 7.It was shown that the effect of the rise of water temperature was favorable when the thermal absorption was to be good by coloring the surface of the water warming pond and removing the bottom osmosis. 8.By enlarging the surface of water in comparison with the depth, and by having dead area of water in the water warming pond, this structure in the water warming pond is helpful for the rise of water temperature.

  • PDF

우리나라 하천의 기온-수온의 상관관계 및 이력현상 분석: 미래 하천수온 변화 예측을 위한 사전검토 (Correlation and Hysteresis Analysis of Air-Water Temperature in Four Rivers: Preliminary study for water temperature prediction)

  • 안지혁;이길하
    • 환경정책연구
    • /
    • 제12권2호
    • /
    • pp.17-32
    • /
    • 2013
  • 최근 인류가 초래한 지구의 온난화로 인하여 기온이 상승하고 이의 직접적인 반응으로 수온 증가가 감지되고 있다. 기온변화가 하천의 수질과 생태 환경에 미치는 영향을 추정하기 위해서는 수온 상승의 시기와 하천 어종에 대한 이해가 필요한데 이를 위하여 미래의 수온을 예측할 필요가 있다. 이에 하나의 사전연구로서 기온-수온 관계에 대하여 분석해 보았다. 2009년에서 2011년까지 3년 동안 환경부의 수질자동관측소에서 관측한 최소 873개에서 최대 1083개의 일 관측 자료를 바탕으로 자기상관관계와 교차상관관계를 조사해 본 결과 0.9 이상의 높은 상관관계를 보였다. 또 지체시간이 10일 미만에서는 기온의 자기 상관 계수가 수온의 가기 상관 계수보다 더 높은 것으로 나타났다. 관측자료의 이력현상을 분석하기 위하여 상승기와 하강기로 나누었는데, 관측지점에 따라서는 강한 이력현상을 보이는 지점도 발견되었다. 결국 기온-수온 관계를 구축함에 계절적인 이력현상이 고려되어야 정확도를 높일 수 있음을 유추할 수 있다.

  • PDF

온수지에 의한 관개용수의 수온상승 효과에 관한 연구 (A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool.)

  • 연규석;최예환
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

최근 동계작물의 파종기간 동안 기후변화 특징 (Characteristics of Climate Change in Sowing Period of Winter Crops)

  • 심교문;김용석;정명표;최인태
    • 한국기후변화학회지
    • /
    • 제6권3호
    • /
    • pp.203-208
    • /
    • 2015
  • This study was conducted to provide the agricultural climatological basic data for the reset of sowing period of the winter crop on the double cropping system with rice. During the past 30 years from 1981 to 2010, mean air temperature has risen by $0.45^{\circ}C$ per 10 years (with statistical significance), while precipitation has decreased by 6.74 mm per 10 years and the numbers of days for precipitation has reduced by 0.23 days per 10 years (with no statistical significance) in the sowing period ($1^{st}$ Oct. to $5^{th}$ Nov.) of winter crop. It was analyzed that double cropping system of rice and winter crops need to be reset in the way of delaying the sowing time of winter crops, because rising trend of temperature was clear while variability of precipitation was great and the trend was not clear in the sowing period of winter crops. We have also analyzed the meteorological features of the sowing period of winter crops in 2014, and found that mean air temperature in 2014 was higher than that in normal years (similar to recent temperature change feature) while precipitation in 2014 was much more frequent than that in normal years (unlike recent precipitation features). Such tendency in 2014 made the sowing of winter crops difficult because mechanical sowing could not be worked in flooded paddy fields. Heavy rain in October 2014 was also analyzed as a rare phenomenon.

농업용수의 수온 상승에 관한 연구

  • 황은;김철규;이상범
    • 물과 미래
    • /
    • 제5권2호
    • /
    • pp.17-29
    • /
    • 1972
  • The persent study aims at finding out a means of prevention cool spell damages on the hilly areas. The irrigation plots of 24 hour stored water warm water way and warm water plots, cool water way are respectively established to find out water temperature and influnce on the growing rice plants. The results obtained are summed up as follows. 1. Warm water areas consisted of $5 m^2 Q=0.93 1{\ell}/sec$, V=31 cm/sec, S=1/1, 000, L=81.6m, B=5cm, h=6cm, t=4min 33sec, drops=9 areas, are constructed to help the water temperature of $14.5^{\circ}C$ rise to that of $21.6^{\circ}C$. This indicates lower temperature than $23^{\circ}C$ of critical water temperature in irrigation facilities by $1.45^{\circ}C$ and than $26.2^{\circ}C$ of balanced water temperature of Seoul arears by $4.6^{\circ}C$. But this does not give much influance on rice plant cultivation. 2. The rising of water temperature is influened according to the temperature, solar radiation but the water temperature changes according to the heat absorption of organized materials, weather and terraces. The difference of water temperature could be found in the first growing stage. 3. Through the warm water way of water rises to the temperature of $21.6^{\circ}C$ which also rises to the temperature of around $30^{\circ}C$ in the paddy field of submerged irrigation. The rice plants are comparatively free from prolonged cool damage, reproduction abstructive damage. 4. The water temperature in rice field in proportion to temperature influence of weather condition but the water temperature approaches to that of weather in the days of later growing stage and water temperature become lower than the air temperature in the fruit stage. 5. The water in the submreged field is $10^{\circ}C$ warmer than in the warm water way during the first growing stage period but the water temperature in the warm water way is warmer in the later growing stage period. The cool water of $14.5^{\circ}C$ is warmed to $30.1^{\circ}C$ and rice plants cultivation is free from other damages. 6. The 12% increased production or 570.98kg/10a is made cool water plot by rising the temperature of water from $14.5^{\circ}C$ to $21.6^{\circ}C$ making the water run through warm water way. 7. The damage inflicted by the cool water irrigation during the first growing stage period is the obstruction of peak tillering stage and the obstruction of heading the later growing stage period and the obstruction of fruiting and number of panides per fill.

  • PDF

空氣밸브型 脈動燃燒시스템의 燃燒特性에 관한 硏究 (A Study on the Combustion Characteristics in an Aero-Valved Pulsating Combustion System)

  • 임광렬;오상헌;최병륜
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.328-337
    • /
    • 1988
  • 본 연구에서는 전보의 연구를 통해 가장 성능이 우수하다고 평가된 형상의 연소시스템을 선택해서, 연소실의 압력변동과 이온전류변동의 동시측정, 압력변동과 온도변동의 동시측정결과를 신호분석기에 의해 통계처리함으로써 아직까지 이해가 대단히 부족한 재착화 및 연소메카니즘, 그리고 공기유동특성에 관한 물리적 현상을 규명하고자 한다.

기후변화 시나리오별 한강유역의 수계별 수온상승 가능성 (Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin)

  • 김민희;이정희;성경희;임철수;황원재;현승훈
    • 한국물환경학회지
    • /
    • 제38권1호
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

황해중부부이에서 관측된 기온 및 표층수온의 변화양상 분석 (Variation Pattern Analysis on the Air and Surface Water Temperatures of the Yellow Sea Monitoring Buoy)

  • 조홍연;정진용;심재설;김선정
    • 한국해안·해양공학회논문집
    • /
    • 제22권5호
    • /
    • pp.316-325
    • /
    • 2010
  • 황해중부해역에 설치된 황해 모니터링 부이에서 관측한 기온과 표층수온의 변동성분을 추출하기 위하여 조화분석을 수행하였다. 분석결과, 기온과 표층 수온 모두 1년, 반년 주기성분이 가장 우세한 것으로 파악되었으며, 보다 짧은 주기성분은 $0.2{\sim}0.5^{\circ}C$ 이하의 작은 변동성분에만 기여하는 것으로 파악되었다. 한편, 기온과 표층수온의 조화분석 성분에서 추출한 잔차성분을 분석한 결과, 기온 잔차성분의 표준편차는 표층 수온 잔차성분의 표준편차보다 2.4배 정도 크고, 잔차성분의 발생빈도분포는 정규분포로 근사화하는 것이 가능한 것으로 파악되었다. 한편, 기온에 따른 표층수온 변화양상을 기온-표층수온 평면에서 분석한 결과 뚜렷한 연속적인 이력고리(hysteresis loop)를 형성하는 것이 발견되었으며, 반시계방향의 기온-표층수온 상승기, 기온-표층수온 하강기 그리고 동계 일정한 표층수온 유지기로 구성되어 있는 것으로 파악되었다.