• Title/Summary/Keyword: Air supply & exhaust

Search Result 159, Processing Time 0.029 seconds

A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel (DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Hyun-Chul;Kang, Woo;Kim, Byoung-Soo;Park, Sang-Hoon;Chung, Jae-Woo;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Characteristics Evaluation of Absorption Cycles using the Waste Heat (배열 이용형 흡수식 사이클 특성평가)

  • Yoon, J.I.;Kwon, O.K.;Moon, C.G.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.23-32
    • /
    • 1998
  • Fuel cells supply electric power and heat at work, and their exhaust gas is comparatively clear. So they are in the limelight as one of the co-generation systems which behave friendly with the environment. Fuel cells discharge both steam and hot water. Accordingly, if we combine absorption heat pump driven by waste heat with fuel cells, we can construct an advanced energy conserving system. The purpose of this study is the objective for evaluating the possibilities of effectively utilizing waste heat of fuel cells as a heat source for the single and double effect absorption systems. Simulation studies on single and double effect absorption have been performed for water/lithium-bromide pair. The effectiveness of introducing a waste heat source of fuel cells is demonstrated. The result of this study showed that total efficiency was about 85% at rated operation and about 75% at 75% load operation. Absorption cycle moved to more strong concentration when fuel cell operated at 75% load.

  • PDF

Effects of Hydrogen-enriched LPG Fuelled Engine on Exhaust Emission and Thermal Efficiency [II] (LPG엔진에서 수소첨가가 배기 성능과 열효율에 미치는 영향 [II])

  • Kwon, T.Y.;Kim, J.H.;Choi, G.H.;Chung, Y.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.297-303
    • /
    • 2002
  • The purpose of study is obtaining low-emission and high-efficiency in LPi engine with hydrogen enrichment. The test engine was named variable compression ratio single cylinder engine (VACRE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. A varied sensors such as crank shaft position sensor (CPS) and hall sensor supplies spark timing data to ignition controller. Displacement of VACRE is $1858.2cm^3$. VACRE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio($\lambda$) of this work was varied between 0,8 and 1.5.

A Study on the Ventilation Method for a Factory with a Sealed Structure

  • Kim, Yeong-Sik;Yi, Chung-Seob;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.159-165
    • /
    • 2014
  • On this work, the importance of industrial ventilation was investigated and examined the theoretical point and problems about general ventilation of factory exposed on high temperature during summer. As a case study, the ventilation planning of the printed circuit board (PCB) etching process for an electronic company was carried out and each of those characteristics were compared by installing actual ventilation systems and measuring the changing state of the working environment in accordance with ventilation method during summer. The purpose of the study is to present an efficient ventilation method for a factory with a closed structure under high temperature environment. In summary, for a factory with a sealed structure such as the target PCB manufacturing factory in this study, the forced supply and exhaust method was the most appropriate ventilation method for maintaining a low.

The properties of algal degradation and gas emission by thermophilic oxic process (고온호기발효장치를 이용한 조류 분해 및 가스 발생특성)

  • Kang, Changmin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 1999
  • The purpose of this study is to establish effective conditions for controlling $CH_4$, $N_2O$ emission from organic Waste / wastewater treatment processes. Continuous and batch experiments were conducted to treat the micro algae from polluted and eutrophicated lakes through the thermophilic oxic process. The microalgae used were mainly Microcystis sp.(collected from eutrophic lake) and Chlorella sp. (cultured in laboratory) Wasted cooking oil was added by aid-heating source. Physico-chemical components of sludges and microalgae were analyzed. In batch experiments, air supply was changed from 50ml/min to 150ml/min. The temperature. water content and drained water were affected by the air flow rate at initial stage. However, there was almost no influence of air flow rate on them in middle and last stages. At air flow rate of 100ml/min, the degradation rate of organic material was higher than that at other air flow rates. $CO_2$ concentration in exhaust was proportional to the strength of aeration, especially at initial stage when degradation was active. $CH_4$ with low concentration was detected only at starting stage when air diffusion was not enough. $N_2O$ production was not affected by variation of air supply. In continuous experiments no matter what the dewatering methods (with PAC and without PAC) and media (wood chip and reed chip) were changed, $N_2O$ was almost not affected by variation of injected air. Result showed that the reed chips using for lake purification could be used as media for thermophilic oxic process in lake and marshes area. $CO_2$ concentration was not so much affected by the change of dewatering methods and media types. $CH_4$ was not detected in the experimental period. So it can be shown that the thermophilic oxic process had been well operated in wide handling conditions regardless of media and dewatering methods.

  • PDF

Fire Modeling and Smoking Control Characteristic Analysis of Electric Room by Using FDS (FDS를 이용한 전기실의 화재모델링 및 연기제어 특성 분석)

  • Choi, Jeong-A;Lee, Min-Gu;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.662-668
    • /
    • 2018
  • Most electric rooms are located in the underground spaces of buildings. When a fire occurs in electrical equipment, the fire expands to cable insulation material, resulting in toxic smoke and combustion products. If the smoke and combustion products quickly move vertically and horizontally, the evacuation of occupants and firefighting activities will be hindered. Therefore, it is necessary to design optimal equipment for smoke control in cases of fires in electric rooms. This study analyzes the characteristics of smoke and combustion products in fires in a cubicle-type switchboard in an electric room using PyroSim, which is based on the program Fire Dynamics Simulator (FDS). The fire modeling consists of four scenarios according to the operation mode of the mechanical ventilation equipment, the amount of air supply and exhaust, and the location of the air supply slot. The analysis shows that the mechanical ventilation equipment improves the smoke density, visibility, carbon monoxide concentration, and temperature characteristics. The visibility and temperature characteristics were improved when the air flow rate and the location of the air supply slot from fire defense regulations were applied.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

A Study on The Performance of Ventilation and Maintaining Thermal Environment for a Combined Type Diffuser (급·배기 일체형 디퓨저의 환기 및 온열환경 유지성능에 대한 연구)

  • Lim, Seok-Young;Chang, Hyun-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.232-241
    • /
    • 2016
  • Installing a ventilator for an apartment house composed of over 100 dwelling units was mandated in 2006 to improve indoor air quality. In the case of mechanical ventilators, the air change rate is kept stable, however 68% of dwellers do not operate their ventilator because of an increased electrical bill and noise. In the case of natural ventilators, the former problems are settled, but there are concerns about cold draught and an increase of heating/cooling cost. Authors are developing a heat recovery type natural ventilator which is a natural ventilator equipped with total heat recovery element, and it is expected that those problems of mechanical ventilator and natural ventilator are resolved by this. The combined type diffuser of this study is an under developed fit to the heat recovery type natural ventilator above. There are no standards to evaluate the performance for this type of diffuser. Due to this issue this study investigated the performance of the ventilation and maintained a thermal environment for the combined type diffuser by comparing it with existing diffusers. The results revealed that the performances of the combined type of diffusers showed different features from the existing ones, and was estimated to be high enough in the performances above.

A study on characteristics of SOFC/GT system for the supply gas flow rates (공급가스 유량에 따른 SOFC/GT 시스템 특성에 관한 연구)

  • Park, Sang-Kyun;Lee, Joo-Hee;Park, Geong-Dae;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.765-772
    • /
    • 2015
  • In this research, the characteristics of SOFC/GT (Solid Oxide Fuel Cell/Gas Turbine) system temperature, stack power and system efficiency for flow rates of air, CH4 and water supplied to SOFC stack have been investigated. The temperature of the gas supplied to cathode and anode of SOFC stack in the SOFC/GT system are maintained by utilizing exhaust gas without the addition of external heat source. As a result, within the scope of this study, temperatures of gas supplied to cathode and anode of SOFC stack were maintained at 1000 (K) by utilizing the exhaust gas of the SOFC/GT system without the addition of external heat source. The system efficiency is increased with increase of air flow rate supplied to the stack and with decrease of $CH_4$ flow rate supplied to the stack. In addition, it can be found that the flow rate of the exhaust gas supplied to the turbine had a significant effect on the system efficiency. And the efficiencies of SOFC stack and SOFC/GT system depending upon various operating conditions of the SOFC/GT system is 51~57% and 57~73%, respectively.

A study on the heat recovery Characteristics of double tube type heat recovery ventilation system by double pipe material (이중관 재질에 따른 이중관형 열회수 환기장치의 열회수 특성 연구)

  • Kim, Eun-Young;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2017
  • In this study, performance tests were conducted to investigate the applicability of a double-tube heat recovery ventilation system. Paper, aluminum, polymer, were investigated as materials for the inner tube using the same exhaust-air volume. In all cases, the temperature exchange efficiency of the aluminum tube was the highest, while the paper tube showed similar results to those of the polymer tube. This probably resulted from the differences in thermal conductivity and thicknesses of the materials. The humidity exchange efficiency was the highest for the paper tubes in all cases, while the aluminum tubes and polymer tubes showed similar results. The total heat exchange efficiency, which includes the values of humidity exchange and temperature exchange, was highest in the case of the paper tube, and the aluminum tube and the polymer tube showed similar results. In the case of the paper tube, sensible heat and latent heat exchange occur at the same time, and the coefficient of energy of the aluminum tube and polymer tube are large values, when to be compared with only applicably sensible heat exchange coefficient of the aluminum tube and the polymer tube of total heat exchange efficiency value. The results of this study could be applied to the design of a ventilation system.