• Title/Summary/Keyword: Air source heat pump

Search Result 281, Processing Time 0.027 seconds

Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger (수평형 지열 히트펌프 시스템의 냉난방 성능 분석)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

Performance Analysis of Heat Pump System for Greenhouse Cooling (온실 냉방을 위한 히트펌프의 성능 분석)

  • 윤용철;서원명;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.120-126
    • /
    • 2001
  • This experiment was carried out to analyse on the cooling and dehumidifying effects of greenhouse by air-to-water heat pump system employing the air as cooling source. following results were obtained ; 1. The coefficients of performance (COP) of heat pump itself and total heat pump system were approximately 2.71~2.88 and 1.99~2.22, respectively. 2. The night-time cooling load of experimental greenhouse was 64.9 MJ/h, and the heat absorbed (cooling load) from heat pump system was 816.3~1,004.6 MJ/day. 3. The dehumidified moisture amount from experimental greenhouse was 7.0~15.0 kg/h. 4. The night time temperature of experimental greenhouse cooled by heat pump system could be maintained 4~6$^{\circ}C$ lower than that of control greenhouse which was almost equal to outside air temperature.

  • PDF

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

Development of Heat Pump System for High Efficiency Engine Vehicle (고효율엔진 차량 히트펌프 시스템 개발)

  • Park, Byung-Duck;Won, Jong-Phil;Lee, Won-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • As DDI or GDI engine discharges very low heat due to its high thermal efficiency, the heat source is not enough for heating the passenger compartment in cold climate condition. To remedy the heating problem, the conventional HFC-134a automotive air-conditioning system has been attempted to run as a heat pump mode. Futhermore, an auxiliary electric heater of new type was equipped to the heat pump air-conditioning loop as a new approach. Hence, a proto-type heat pump air conditioner has been made and tested to investigate the feasibility of the HFC-134a automobile air-conditioning system that could be worked as a heat pump. The experiment results showed that the sufficient heating capacity could be obtained by adding a heat pump with an new electric type auxiliary heater into the conventional heat core in low temperature condition.

  • PDF

Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열 히트펌프 시스템의 성능분석)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.

Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode (지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Moon, Je-Myung;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.

A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source (하수열원 열펌프 시스템의 성능 시뮬레이션)

  • Park, Il-Hwan;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee;Baek, Young-Jeen
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.