• Title/Summary/Keyword: Air slit

Search Result 89, Processing Time 0.023 seconds

Epicuticular Waxes and Stomata of Adult Scale Leaves of the Chinese Juniper Juniperus chinensis

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.124-128
    • /
    • 2012
  • Leaf surface structures were investigated in the Chinese juniper Juniperus chinensis by scanning electron microscopy. Adult scale leaves were collected from the tree, air-dried at room temperature, and sputter-coated with gold without further specimen preparation. Approximately fi ve stomata were locally distributed and arranged in clusters on the leaf surface. Stomata were ovoid and ca. 40 ${\mu}m$ long. The epicuticular wax structures of J. chinensis leaves were tubules and platelets. Numerous tubules were evident on the leaf regions where stomata were found. The tubules were cylindrical, straight, and ca. 1 ${\mu}m$ in length. They almost clothed the stomatal guard cells, and occluded the slit-shaped stomatal apertures. Moreover, the wax ridges were flat crystalloids that were connected to the surface by their narrow side. They did not have distinct edges, and their width/height ratio varied. In particular, the wax ridges could be discerned on the leaf regions where stomata were not present nearby. Since the wax ridges did not have distinct edges on their margin, they were identified as platelets. Instances were noted where platelets were oriented either parallel to each other or perpendicular to the cuticle surface. These results can be used in biomimetics to design the hierarchical structures for mimicking the plant innate properties such as hydrophobicity and self-cleaning effects of the leaf surface.

Measuring and Characterizing the Apparent Thickness and its Irregularity of Fine Wire Bundle by Using a Laser Scanning Method (Laser Scanning을 이용한 극세선 집속체의 겉보기 굵기 측정과 불균제 특성)

  • Huh, Y.;Kim, J.S.;Baik, Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1573-1576
    • /
    • 2003
  • The quality of bundles is closely related with the apparent thickness. Especially the variation of apparent thickness of bundle determines the qualify of the plane structure made or the bundle such as surface evenness, pore size, and the shape of air-gap, etc.,. This study is dealing with the development of a new measuring system of the thickness of bundle or cross-section by determining the size of the shadow of the object covered by a laser slit beam. Also the measured signal is characterized in terms of the correlogram, the irregularity in wavelength. The correlogram for the irregularity of several sample types could be represented by a sinusoidal function with exponentially decaying amplitude. Moreover, influence of the measuring speed on the signal and the characteristic differences according to the different types of bundle are investigated.

  • PDF

PlV Measurement of Channel Cavity Flow with Bottom Heat surface of Constant Heat Flux (일정 열유속의 하부 가열면을 갖는 채널캐비티 내부유동의 PIV 계측)

  • 조대환;김진구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-442
    • /
    • 1997
  • An experimental study was carried out in a channel cavity with square heat surface by visual¬ization equipment with Mach - Zehnder interferometer and laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two¬frame grey-level cross correlation algorithm. Heat source was uniform heat flux(o.4W/cm$^2$, , O.8W/cm$^2$, 1.2W/cm$^2$). Obtained result showed various flow patterns such as kinetic energy distribution. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach ~ Zehnder are also compared in terms of constant heat flux.

  • PDF

Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner (슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response (마찰을 고려한 포일저널베어링의 동특성해석: 회전불균형 응답)

  • Kim, Kyung-Woong;Lee, Dong-Hyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.219-227
    • /
    • 2007
  • The dynamic performance of air foil bearings relies on a coupling between a thin air film and an elastic foil structure. A number of successful analytical techniques to predict dynamic performance have been developed. However, the evaluation of its dynamic characteristic is still not enough because of the mechanical complexity of the foil structure and strong nonlinear behavior of friction force. This work presents a nonlinear transient analysis method to predict dynamic performance of foil bearings. In this method, time dependent Reynolds equation is used to calculate pressure distribution and a finite element method is used to model the bump foil structure. The analysis is treated with a direct implicit integration technique that can handle nonlinear problems and the stick-slip algorithm is used to consider friction force. Using this method the response to the mass unbalance excitation is investigated for various design parameters and operating conditions. The results of analysis show that foil bearing is very effective on the restriction of vibration at the resonance frequency compared to the rigid surface bearings and the effectiveness depends on the operating conditions, static load and a amount of mass unbalance. In addition, there exist optimum values of friction coefficient, bump foil stiffness and number of circumferential slit with regards to minimizing dynamic response at the resonance frequency. These optimum values are system dependent.

Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate (배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

Thermo-physiological Responses by Presence of Vents and Difference in Clothing Length for Construction Site Working Clothes (통기구 유무와 옷 길이 차이에 따른 건설현장 작업복의 온열생리반응)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • This study examined thermo-physiological responses according to the design change of construction site working clothes (control (C) working clothes; prototype (P) working clothes). We measured rectal temperature, skin temperature, micro-climate within the clothes and sweat rate. In the evaluation of physiological functionality, based on pattern improvement in working clothes, P working clothes showed significantly lower rectal temperatures, trunk and thigh skin temperatures than C working clothes. It is preferable that rectal temperature should be kept low during work that is not favorable to an increase in body temperature. P working clothes were more physiologically functional than C working clothes. In addition, P working clothes showed significantly lower temperatures in the trunk and thigh parts in a micro climate temperature. We could explain that the side seam zipper on the pants and the gusset on armpit parts create an air permeability effect of lowering the temperature of micro-climate. Aggressive ventilation through the slit of the garment is an important factor for the restoration of the physiological function of the worker at rest between work. Sweat rate showed a higher level in C working clothes than P working clothes. When working in a hot environment, workwear needs to be designed so that the worker is not exposed to thermal stress. Therefore, it was evaluated that the P work clothes used in this study alleviated the physiological burdens of heat.

A Study on the Adaptive Reuse Techniques through the History of Buildings in the Historic Urban Area - Focused on the Deep and Narrow Lots of Nammun-ro 2Ga, Cheongju - (역사적 도심 내 건축물의 이력을 통해 본 재생기법에 관한 연구 -청주시 남문로 2가동의 세장형 필지를 대상으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • This study is intended to derive the adaptive reuse techniques through the history and aspects of new construction, extension, repair, and other works, limited to the deep and narrow lots facing Seongan-gil and Nammun-gil in Nammun-ro 2 ga of Cheongju, the historic urban area. The results are as follows. 1) In the case of newly built reinforced concrete buildings, the central part of the top floor of the residence or all floors are opened to the open space(void) to facilitate lighting and ventilation. This is developed as a convection phenomenon due to the temperature difference from the slits between buildings, which affects the entire air flow of the block. 2) The buildings of extension and repair are composed of two-story masonry or steel frame, both the front store facing the road and the house on the back, but it looks like one because it is in contact with each other. If only a small gap between the front and rear buildings is restored to an external space or a space equipped with sun light, a small breath can be provided in lighting and ventilation. 3) The existing two-story wooden stores and houses have lost their external space due to repairs. With minimal intervention to restore the small courtyard, slits, and space under the eaves, it will not only improve lighting and ventilation, but also create a unique appearance as a segment of the elongated store.

Prediction and Experiment of Pressure Drop of R22 and R134a on Design Conditions of Condenser (응축기의 설계조건에서 R22와 R134a의 압력강하 예측 및 실험)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.243-249
    • /
    • 2006
  • An experimental study on the refrigerant-side pressure drop of slit fin an tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and Rl34a. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and mass fluxes varying from $150\;to\;250\;kg/m^{2}s$ for R22 and Rl34a. The inlet air conditions are dry bulb temperature of $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R134a was $22{\sim}22.6%$ higher than R22 for the degree of subcooling $5^{\circ}C$ For the mass fluxes of $200{\sim}250\;kg/m^{2}s$, the deviation between the experimental and predicted values for the pressure drop was less than ${\pm}20%$ for R22 and Rl34a.