• Title/Summary/Keyword: Air side pressure drop

Search Result 103, Processing Time 0.03 seconds

An Experimental Study on Performance Characteristic of 30RT Closed-Type Hybrid Cooling Tower using Bare Tube (베어관을 이용한 30RT급 하이브리드 밀폐형 냉각탑의 성능특성에 관한 실험적 연구)

  • Jun, Chul-Ho;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1096-1101
    • /
    • 2005
  • In this study, the experiment of thermal performance about closed-type hybrid cooling tower was conducted. A closed type cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water flows gravitational direction in the outer side of it. Air contacts of tube outer side are counterflow. The heat transfer pipe used in this experiment is a bare type tube having an outside diameter of 15.88mm. In this experiment, heat performances of the cooling tower are calculated such as overall heat transfer coefficient of between the process fluid and air, cooing capacity and pressure drop.

  • PDF

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

Characteristics of the Air-side Particulate Fouling Materials in Finned-Tube Heat Exchangers of Air Conditioners (공기조화기용 열교환기의 공기측 파울링 입자 분석 연구)

  • 안영철;신희수;황유진;이창건;이재근;이현욱;안승표;윤덕현;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.611-617
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the characteristics of the air-side particulate fouling materials in finned-tube heat exchangers of air conditioners. Air conditioners being used in the field such as inns, restaurants, and offices are collected in chronological order in use. Typical fouling materials on the heat exchangers include fibers and dusts ranged from 6.6 to 20.9 ${\mu}{\textrm}{m}$ in mass median diameter.

Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box (상자포장 청과물의 송풍저항 특성)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

Pressure Drop of a Gasket Sealed Plate Type Heat Exchanger upon its Operating Conditions (Gasket 방식 판형 열교환기의 고.저온부 유량 및 압력차에 따른 압력강하 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.189-194
    • /
    • 2009
  • In a gas engine based cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is often recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. Depending on the operating conditions of engine and heat recovery system, there should be imbalance in the flow rate and supply pressure between engine and heat recovery side of the heat exchanger. The imbalance cause the deformation of the plate, which affects the pressure drop characteristics. In the present study, the pressure drop inside the heat exchanger has been investigated in a 1/5 scaled test rig and compare with the experimental correlations, which are used for the design.

  • PDF

An Experimental and Numerical Study on Automotive IRDS Condenser (자동차용 IRDS 응축기에 대한 실험과 해석적 연구)

  • Kim, Hak-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • The specific objective of this study was to develop an IRDS (integrated receiver drier subcooling) condenser model for use in a mobile air-conditioning system. A three-zone model based on the desuperheating, two-phase, and subcooling sections of a condenser could be used to estimate the performance with a good accuracy. Overall heat transfer coefficients for each of the three sections, expressed as a function of the air velocity across the condenser and refrigerant mass flow rate and the model using the elemental difference method incorporate calculations to determine the pressure drop, heat performance within the condenser and it includes physical parameters (pass, tube hole size and length) that can be varied to analyze potential design changes without exhaustive experimental efforts. it was found that an accuracy of heat performance was within 5% in case of using the various condensers, the refrigerant pressure drop was predicted within 25% and the pressure drop of air side was well matched with experiment data within 4%.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.

Air-Side Heat Transfer in Louvered Fin Heat Exchangers (Louvered fin 열교환기(熱交換器)의 공기측(空氣側) 열전달(熱傳達))

  • Kim, C.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.82-86
    • /
    • 1989
  • A study has been conducted experimentally on heat transfer characteristics of the heat exchangers with louvered fins in air. The experimental results are as follows; 1. Mean heat transfer coefficient is decreased with increasing temperature difference and model III is the best at constant temperature difference. 2. Pressure drop is increased with increasing air velocity, but it is decreased as the heat transfer area increases. 3. $\bar{h}/^{\Delta}p$ is increased and then decreased as air velocity increases.

  • PDF

An Experimental Study on the Performance of a Brazed Plate Heat Exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • 김종하;권오경;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study on the performance evaluation of a brazed plate heat exchanger with 10USRT of normal cooling capacity has been carried out. In the present study, a brazed plate heat exchanger was tested at a chevron angle $25^{\circ}$with refrigerant R-22. Refrigerant mass flux was ranged from 23 to 58 kg/$m^2$s in condensation, and from 22 to 53 kg/$m^2$s in evaporation. The heat transfer coefficients and pressure drops are increased as the mass flux increases. The water side pressure drop is increased as the cooling water flow rate and chilled water flow rate increase, while mass flux has little effect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF