• Title/Summary/Keyword: Air ratio

Search Result 4,304, Processing Time 0.033 seconds

An Engine Model of a Heavy-Duty Compressed Natural Gas Engine for Design of an Air-Fuel Ratio Controller (대형천연가스차량의 공연비제어기 설계를 위한 엔진모델)

  • 심한섭;이태연
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.80-87
    • /
    • 2003
  • Air partial pressure ratio and inlet air mass flow are influenced by water vapor and gaseous fuel in mixture on Compressed Natural Gas (CNG) engines. In this paper, the effects of the water vapor and the gaseous fuel that change the air mass flow and the air-fuel ratio are studied. Effective air mass ratio is defined as the air mass flow divided by mixture mass flow, and also it is applied to the estimation of the inlet air mass flow and the air-fuel ratio. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the CNG engines. The experimental results for the CNG engine show that estimation of the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal mode.

A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine (선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF

Air-Fuel Ratio Control of Automobile Engines in Steady States by Neural Networks (신경회로망을 이용한 정상상태에서의 자동차 엔진의 공연비제어)

  • 최종호;원영준;고상근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2119-2125
    • /
    • 1992
  • An air-fuel ratio control method is studied to keep the air-fuel ratio of the exhaust gas in the neighborhood of the stoichiometric air-fuel ratio to maximize the conversion efficiency of the three-way catalytic converter. Estimators, which estimate the air-fuel ratio of the exhaust gas, are proposed using neural networks to overcome the limit of the presently used bang-bang type exhaust gas oxygen sensor. Using these estimators, PI controller for air-fuel ratio control is designed and is experimented for an automobile engine. The proposed controller reduces the variation of air-fuel ratio of the exhaust gas from the stoichiometric air-fuel ratio by 50%-75% when compared to the existing controller.

Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines (기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정)

  • 심한섭;이강윤;선우명호;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

Adequate Excessive Air Ratio for The Various Blended Coal at a USC Boiler (USC 보일러에서 혼합연료별 적정과잉공기비)

  • Park, Jin-Chul;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.7 no.2
    • /
    • pp.44-51
    • /
    • 2011
  • Given the fact that the entire bituminous coal used for a boiler is imported, the supply of coal is often affected by the rise of international coal price. Moreover, coal suppliers have been diversified due to the competition among power generation companies for reducing costs and inexpensive sub-bituminous coal is used. As a result, boilers combustion conditions have been deviated from the initial boiler design. This requires the selection of adequate excessive air ratio for different combustion conditions to enhance the efficiency of boiler operation. The boiler efficiency has been identified through an examination on the change of excessive air ratio by mixed fuel in unit 8 of Dangjin power plant complex. In addition, an excessive air ratio was calculated based on the examination result. According to the study result, the adequate excessive air ratio was 13% when Macquarie and Powder river were mixed at a ratio of 5:5 and when Sonoma and Megaprima persada were mixed at a ratio of 5:5. When BHP Billiton and Powder river were mixed at a ratio of 4:6 and Centennial and Batubara were mixed at a ratio of 3:7, the adequate excessive air ratio was 11%.

  • PDF

Construction of Map for Transient Condition of a Sl Engine and Refinement of Intake Air Model & Fuel Model (가솔린 엔진의 비정상 상태에 대한 Map 구성과 공기 및 연료 모델 개선)

  • 심연섭;강태성;강승표;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • For gasoline engines, a three-way catalytic converter that has the maximum efficiency at stoichiometric air/fuel ratio is used to clean up the exhaust gas. So a precise air/fuel ratio control is necessary to maximize the catalytic conversion efficiency, For a transient condition, a fred-forward air/fuel ratio control method that estimates the air mass inducted into a cylinder is being used. In this study, a fuel injection map that makes an accurate air/fuel ratio control possible was constructed for the very same transient condition. For the same condition above, intake air model and fuel model were refined so that fuel injection values based on air mass through a throttle valve and intake manifold pressure are equal to the map values.

The Study on the improvement of dynamic characteristics with multi-orifice in airspring (멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구)

  • 김인수;황성호;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

Combustion Emission Characteristics on the Effect of Secondary Air Injection in Model Gas Turbine Combustor (모형 가스터빈 연소기의 2차공기 주입에 따른 연소배출특성)

  • 김규성;임경달;이도형
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.84-89
    • /
    • 2000
  • The purpose of this study is to investigate the combustion emission characteristics by the effect of secondary air injection and variation of the excess air ratio in combustion field of model gas turbine combustor. For this purpose, mean temperature, CO, $CO_2$, $O_2$ and HC concentrations were measured by changing excess air ratio and secondary air injection. As a result of this study, mean temperature was decreased and CO, HC emission increased by increasing the excess air ratio of secondary air. Therefore, this results showed the secondary air injection effected strongly on the flame structure and combustion emission characteristics.

  • PDF

Effects of Secondary Air Injection in Combustion Field of Model Gas Turbine Combustor (모형 가스터빈 연소기에서 2차공기 주입이 연소장에 미치는 영향)

  • 김규성;임경달;이동형
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.171-176
    • /
    • 2000
  • This purpose of this study is to investigate the combustion emission characteristics on the effect of secondary air injection in combustion field of model gas turbine combustor changing excess air ratio. For this purpose, meantemperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and secondary air injection. As a result of this study, meantemperature, CO2 emission was decreased and CO emission increased by increasing the excess air ratio of secondary air. therefore, This paper showed the effect of Secondary air injection on flame structure, combustion emission characteristics.

  • PDF

Adjustment of the Excess Air Ratio for Stabilizing the Draft System in a Large Capacity Coal Fired Power Plant (대형 석탄화력 발전소에서 통풍계통 안정화를 위한 과잉공기비 조정)

  • Park, Kun Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2018
  • In this study, I analyzed the effects on stabilizing the draft system, boiler efficiency when changing excess air ratio under 870 MW load limit operation condition in a large capacity coal fired power plant and decided optimum excess air ratio. It is positively necessary to choose adequate excess air ratio for stabilizing draft system because air pre-heater pressure drop and induced draft fan first stall margin are changing when adjusting excess air ratio. This study therefore, measured air pre-heater pressure drop, induced draft fan first stall margin, boiler efficiency, loss and has chosen adequate excess air ratio adjusting excess air ratio from 1.153 to 1.127. So it is recommended that the operation point needs to be changed to 1.127 that is not only to decrease air pre-heater pressure drop and to stabilize draft system and to secure stall margin but also to maintain boiler efficiency to equivalent level.

  • PDF