• Title/Summary/Keyword: Air quality monitoring system

Search Result 160, Processing Time 0.036 seconds

The Development of VOC Measurement System Uging PCA & ANN (PCA와 ANN을 이용한 VOC 측정기기 개발)

  • Lee Jang-Hoon;Kwon Hyuk-Ku;Park Seung Ho;Kim Dong-Jin;Hong Chol-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government identifies the pollutants that each industry must monitor. Especially, the VOCs (Volatile Organic Compounds), which are very harmful to human body and environment atmosphere, should be controlled under the government policy. However, the VOCs, which have not been confirmed in emission sources are very difficult to monitor. It is needed to develop the monitoring system that allow the continuous and in situ measurement of VOCs mixture in different environmental matrices. Gas chromatography and mass spectrometry are the most prevalent current techniques among those available for the analysis of VOCs. But, they need a large size analytical instrument, which costs a great deal for purchase and operation. In addition, it has some limitations for realtime environmental monitoring such as location problems and slow processing time. Recently, several companies have commercialized a portable VOCs measurement systems, which cannot classify various kinds of VOCs but total quantities. We have developed a VOCs measurement system, which recognizes various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Also, it can be used as a stand- alone type and/or fixed type in the vehicle with rack for real -time environmental monitoring.

Development of Tunnel-Environment Monitoring System and Its Installation II -Measurement in Gumjung Tunnel- (터널 환경 측정 시스템 개발 및 측정 II -금정터널 측정결과 분석-)

  • Park, Won-Hee;Cho, Youngmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.758-765
    • /
    • 2016
  • This paper is a follow-up paper to the publication, "Development of Tunnel-Environment Monitoring System and Its Installation I - Monitoring System and Measurement in Subway Tunnel" [1]. An environment monitoring system was installed in the 20.3-km-long Gumjung tunnel, which has the general structure of a high-speed double-track railway tunnel. Data were collected for approximately one year. Monthly and daily data were obtained and analyzed for the temperature and relative humidity in summer and winter months. This paper discusses the environmental characteristics at different positions in the tunnel. The results are expected to be widely used in studies on tunnel ventilation and the improvement of air quality and thermal environments.

A Study on Development of Air Pollution Weather Forecast System over Pusan Coastal Area - Centering around Forecast of Ozone Episode Day- (부산연안역에서의 대기오염기상 예보시스템 개발에 관한 연구 -고농도 오존일의 예측을 중심으로-)

  • 김유근;이화운
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.399-410
    • /
    • 1996
  • Pusan is the largest coastal city with a population of about four mi18ion in Korea. Because of increased and confused traffic, photochemical air pollution become a major urban environmental problem recently. The photo-chemical air pollution weather forecasting method preciser than existing air pollution forecast method has been developed to forecast ozone episode days with meteorological conditions using the data measured at 7 air quality continuous monitoring stations from lune to September using 2 years (1994, 1995). The method developed in present study showed higher percentage correct and skill score than existing air pollution forecasting in KMA ( Korea Meteorological Administration).

  • PDF

Implement of Analysis system with Indoor Environment Monitoring Based on IoT (사물인터넷 기반 실내 환경 모니터링 분석 시스템 구현)

  • Nam, Jae-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1687-1692
    • /
    • 2019
  • In the era of the fourth industrial revolution, advanced technologies such as the Internet of Things(IoT) and big data are emerging. However, the level of application of IoT to indoor environment is very weak. Therefore, it is necessary to develop a system for analyzing air pollutants or indoor air quality through real-time monitoring using the IoT. This paper implements a system that measures indoor environmental values using Arduino and various sensors, and stores the information obtained from various sensors into a database of server. The information stored in the server was built as a database and utilized in the ventilation system or air cleaner installed in the home or company's room. In the proposed system, it is possible to check the immediate indoor environmental condition through the LED status display of the monitoring sensor module while reducing the cost of the sensor used to implement IoT technology.

Study on Indoor Air Pollutants of Public Service Centers in Winter, Seoul (서울지역 공공청사 민원실의 겨울철 실내공기질에 관한 연구)

  • Jeon, Jea-Sik;Kim, Mi-Hyung;Lee, Ju-Yeol;Jeon, Myung-Jin;Ryu, In-Cheol;Park, Duck-Shin;Choi, Han-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • This study evaluated the indoor air quality of 26 government offices located in Seoul. The pollutant samples were taken from Jan. 13th to Jan. 29th and Feb. 20th to Feb. 23rd, 2010 in the offices. The target indoor pollutants for this study were $PM_{10}$, formaldehyde, carbon monoxide, carbon dioxide, total bacteria counts, total volatile organic compounds, radon, nitrogen dioxide, ozone, and asbestos which were controlled by the indoor air quality law for the multiple-use facilities management. The results of this study showed that some pollutants of the 38.5% offices exceeded the standards of the air quality guideline. The correlation analysis of the same pollutants between indoor and outdoor represented that $NO_2$ (r=0.629, p<0.05) and $O_3$ (r=0.459, p<0.01) were significant, however, $PM_{10}$ and CO were not. The correlation analysis between different pollutants showed that CO and TVOC (total volatile organic compounds: r=0.724; p<0.01), CO and $NO_2$ (r=0.674; p<0.01), HCHO and humidity (r=0.605; p<0.01), $CO_2$ and TVOC (r=0.534; p<0.01), TBC (total bacteria counts) and Asbestos (r=0.520; p<0.01) were significant. The energy-saving system of government buildings in winter caused under-ventilated and poor air quality. This study suggests that the concentrations of radon and $CO_2$ should be used as an indicator for monitoring indoor air quality and maintaining effective ventilations.

Development of a portable system for monitoring indoor particulate matter concentration (휴대용 실내 미세먼지 농도 측정 장치 개발)

  • Kim, Yoo Jin;Choi, Hyun Seul;Go, Taesik
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Airborne particulate matter(PM) has been a global environmental problem. PM whose diameter is smaller than 10 ㎛ can permeate respiratory organs and has harmful effects on human health. Therefore, PM monitoring systems are necessary for management of PM and prevention of PM-induced negative effects. Conventional PM monitoring techniques are expensive and cumbersome to handle. In the present study, two types of PM monitoring devices were designed for measuring indoor PM concentration, portably. We experimentally investigated the performance of three commercial PM concentration measurement sensors in a closed test chamber. As a result, PM2008 sensor showed the best PM concentration measurement accuracy. Linear regression method was applied to convert PM concentration value acquired from PM2008 sensor into ground truth value. A mobile application(app.) was also created for users to check the PM concentration, easily. The mobile app. also provides safety alarm when the PM10 concentration exceeds 81 ㎛/m3. The developed hand-held system enables the facile monitoring of surrounding air quality.

Assessments of the GEMS NO2 Products Using Ground-Based Pandora and In-Situ Instruments over Busan, South Korea

  • Serin Kim;Ukkyo Jeong;Hanlim Lee;Yeonjin Jung;Jae Hwan Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Busan is the 6th largest port city in the world, where nitrogen dioxide (NO2) emissions from transportation and port industries are significant. This study aims to assess the NO2 products of the Geostationary Environment Monitoring Spectrometer (GEMS) over Busan using ground-based instruments (i.e., surface in-situ network and Pandora). The GEMS vertical column densities of NO2 showed reasonable consistency in the spatiotemporal variations, comparable to the previous studies. The GEMS data showed a consistent seasonal trend of NO2 with the Korea Ministry of Environment network and Pandora in 2022, which is higher in winter and lower in summer. These agreements prove the capability of the GEMS data to monitor the air quality in Busan. The correlation coefficient and the mean bias error between the GEMS and Pandora NO2 over Busan in 2022 were 0.53 and 0.023 DU, respectively. The GEMS NO2 data were also positively correlated with the ground-based in-situ network with a correlation coefficient of 0.42. However, due to the significant spatiotemporal variabilities of the NO2, the GEMS footprint size can hardly resolve small-scale variabilities such as the emissions from the road and point sources. In addition, relative biases of the GEMS NO2 retrievals to the Pandora data showed seasonal variabilities, which is attributable to the air mass factor estimation of the GEMS. Further studies with more measurement locations for longer periods of data can better contribute to assessing the GEMS NO2 data. Reliable GEMS data can further help us understand the Asian air quality with the diurnal variabilities.

Estimation of Biogenic Emissions over South Korea and Its Evaluation Using Air Quality Simulations (남한지역 자연 배출량 산정 및 대기질 모사를 이용한 평가)

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Cho, Kyu-Tak;Byun, Dae-Won W.;Song, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.423-438
    • /
    • 2008
  • BEIS2 (Biogenic Emissions Inventory System version 2) and BEIS3.12 (BEIS version 3.12) were used to estimate hourly biogenic emissions over South Korea using a set of vegetation and meteorological data simulated with the MM5 (Mesoscale Model version 5). Two biogenic emission models utilized different emission factors and showed different responses to solar radiations, resulting in about $10{\sim}20%$ difference in the nationwide isoprene emission estimates. Among the 11-vegetation classes, it was found that mixed forest and deciduous forest are the most important vegetation classes producing isoprene emissions over South Korea comprising ${\sim}90%$ of the total. The simulated isoprene concentrations over Seoul metropolitan area show that diurnal and daily variations match relatively well with the PAMS (Photochemical Air Monitoring Station) measurements during the period of June 3${\sim}$June 10, 2004. Compared to BEIS2, BEIS3.12 yielded ${\sim}35%$ higher isoprene concentrations during daytime and presented better matches to the high peaks observed over the Seoul area. This study showed that the importance of vegetation data and emission factors to estimate biogenic emissions. Thus, it is expected to improve domestic vegetation categories and emission factors in order to better represent biogenic emissions over South Korea.

Implementation of Indoor Air Quality Monitoring System for Subway Stations (지하철 역사 공기질 모니터링 시스템의 구현)

  • Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.294-301
    • /
    • 2013
  • The particle matter concentrations in the subway stations should be monitored and controlled for the health of commuters on the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. In this paper, the reliability of the cheap instruments using light scattering method is improved with the help of a linear regression analysis technique to measure the $PM_{10}$ concentrations continuously in the subway stations. In addition, a monitoring system is implemented to display and record the data of $PM_{10}$, $CO_2$, humidity, and temperature. To transmit and receive these measured sensor data, CDMA M2M wireless communication method is applied.

The Validation of Air Pollution Simulation Models(comparisons between Hanna-Gifford Model and Air Quality Display Model in the Application to Air Pollution of Seoul) (대기오염 모델의 정합도에 대한 연구: (서울특별시 대기오염추계에 있어 Hanna - Gifford Model과 Air Quality Display Model의 적용에 대하여))

  • Chung, Yong;Jang, Jae-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.81-90
    • /
    • 1986
  • Hanna - Gifford Model and Air Quality Display Model(AQDM) were validated in the simulation of $SO_2$ and TSP concentrations of Seoul City. The observed data which were measured at 16 sites of air monitoring system conducted by Seoul metropolitan city in 1984 were compared with the simulated data and the results were obtained as follows; 1. Several different meteorological data were examined: The particularities of meteorological data was not an influencing factor in the validity of simulation. The simulations of $SO_2$ by Hanna - Gifford model and by AQDM showed close correlation coefficients between the observed data and the simulated data (r = 0.71 - 0.78). 2. The simulation models showed different validities with the seasonal variation: The correlation coefficients (r) between the observed and the simulated by Hanna - Gifford Model for $SO_2$ and TSP were 0.86 and 0.80 in Spring, 0.63 and 0.66 in Summer, 0.76 in Autumn and 0.81 and 0.93 in Winter respectively. Those by AQDM were 0.73 and 0.68 in Spring, 0.56 and 0.79 in Summer, 0.77 and 0.76 in Autumn and 0.64 and 0.68 in Winter respectively. 3. The simulated data by two models had a close relationships: The correlation coefficients between them were 0.96 for $SO_2$, and 0.93 for TSP. With the above results, the application of models was discussed; Hanna - Gifford model was less valid in the simulation for the air quality of $SO_2$ and TSP in Seoul in Summer and AQDM also was not valid for $SO_2$ in Summer and in Winter and for TSP in Spring.

  • PDF