• Title/Summary/Keyword: Air pollutants$PM_{10}$

Search Result 424, Processing Time 0.033 seconds

Exposure Characteristics of Indoor Air Pollutants in Some Local Pubic Buses (IoT 기반 시내버스 실내공기질 노출 특성)

  • Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2022
  • Background: Air pollution is increasing together with industrialization and urbanization. In order to reduce air pollution, public transportation is recommended rather than private cars, and the number of passengers using public transportation is increasing accordingly. This study observes the concentration of indoor pollutants in city buses over time. Through this means, we intend to suggest a plan to manage the indoor air quality in city buses. Objectives: The concentration of indoor pollution in public transportation was investigated from April 2021 to January 2022. Based on this, we evaluated the exposure to indoor pollutants. Methods: Six city bus lines in an industrial city were selected for the research, and indoor pollution was measured through IoT (Internet of Things)-based sensor-type measuring devices. The concentration of pollutants was measured every minute, and statistical data were constructed based on the measurement results. Results: In all the city buses studied, the average concentration of pollutants were below the guidelines. However, some measurement results showed cases of exceeding the guidelines. As a result of the analysis by time zone, there were more cases in which pollutants exceeded the standard value during rush hour compared to at other times. A risk assessment for PM10 was performed by evaluating the excess mortality risk from exposure and the risk from inhalation exposure. Conclusions: All measured indoor pollutants in the city buses did not exceed the guidelines. Also, the risk assessment results were found to be within the level of safety. However, if a city bus is used for a long time, there is a possibility that there may be an impact on the human body due to inhalation exposure, so additional management is required.

A prediction study on the number of emergency patients with ASTHMA according to the concentration of air pollutants (대기오염물질 농도에 따른 천식 응급환자 수 예측 연구)

  • Han Joo Lee;Min Kyu Jee;Cheong Won Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2023
  • Due to the development of industry, interest in air pollutants has increased. Air pollutants have affected various fields such as environmental pollution and global warming. Among them, environmental diseases are one of the fields affected by air pollutants. Air pollutants can affect the human body's skin or respiratory tract due to their small molecular size. As a result, various studies on air pollutants and environmental diseases have been conducted. Asthma, part of an environmental disease, can be life-threatening if symptoms worsen and cause asthma attacks, and in the case of adult asthma, it is difficult to cure once it occurs. Factors that worsen asthma include particulate matter and air pollution. Asthma is an increasing prevalence worldwide. In this paper, we study how air pollutants correlate with the number of emergency room admissions in asthma patients and predict the number of future asthma emergency patients using highly correlated air pollutants. Air pollutants used concentrations of five pollutants: sulfur dioxide(SO2), carbon monoxide(CO), ozone(O3), nitrogen dioxide(NO2), and fine dust(PM10), and environmental diseases used data on the number of hospitalizations of asthma patients in the emergency room. Data on the number of emergency patients of air pollutants and asthma were used for a total of 5 years from January 1, 2013 to December 31, 2017. The model made predictions using two models, Informer and LTSF-Linear, and performance indicators of MAE, MAPE, and RMSE were used to measure the performance of the model. The results were compared by making predictions for both cases including and not including the number of emergency patients. This paper presents air pollutants that improve the model's performance in predicting the number of asthma emergency patients using Informer and LTSF-Linear models.

Japanese Measurement on Fine Particles(PM2.5) Emission Pollution and Cooperation of Korea -China-Japan to Reduce Fine Particles Pollution- (일본의 미세먼지 대책과 미세먼지 저감을 위한 한중일 협력)

  • Lee, Soocheol
    • Environmental and Resource Economics Review
    • /
    • v.26 no.1
    • /
    • pp.57-83
    • /
    • 2017
  • The Japanese government's attempts to reduce fine particles (PM2.5) emission pollution in Japan have been largely ineffective. This is because PM2.5 in Japan originated from various sources including around half from oversea countries such as China. This prompts the Japanese government to start a new initiative to reduce PM2.5 at its origin by transferring local knowledge on air pollution reduction measures and technologies to China and working closely with the Chinese government. To promote further reduction in PM2.5, bilateral corporation between Japan and China should be extended to include Korea. It is recommended that an international convention should be in place to deal with transboundary air pollutants in East Asia. A successful East Asia corporation to reduce PM2.5 will not only contribute to clean air but also to future sustainable low carbon society in this region.

Characteristics of Air Quality in the West-coastal Urban Atmosphere (서해연안 도시지역의 대기질 특성 연구: 군산과 전주의 대기질 비교를 중심으로)

  • Kim, Deug-Soo;Ma, Hui
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.550-561
    • /
    • 2009
  • This study is to investigate the air pollution characteristics of an industrialized midsize west-coastal city by comparing air quality to a neighboring inland city. The hourly averaged data of $O_3$, $SO_2$, $NO_2$, CO, and $PM_{10}$ measured from continuous air quality monitoring sites in Gunsan (coastal) and Jeonju (inland) were analyzed. The data set covers the period from 2004 to 2006. The annual average concentrations of the air pollutants in two cities were compared in their abundances and temporal trends as well. $O_3$ and $SO_2$ in Gunsan were relatively higher than those in Jeonju, while vice versa in case of $NO_2$ and $PM_{10}$. It seems that heavy automobile emissions from Jeonju mainly bring on higher $NO_2$ and $PM_{10}$ than those in Gunsan on annual base. $NO_2$ concentrations in both cities showed bimodal diurnal variations with peaks in the morning and in the late evening. These peaks correspond to the coupled effects of rush hour traffic and meteorological conditions (i.e., variation of mixing height and dispersion conditions). Maximum hourly averages of $NO_2$ ranged from 18 ppb to 28 ppb at Jeonju, and from 12 ppb to 20 ppb at Gunsan. $O_3$ showed typical diurnal variation with a maximum in the afternoon between 14:00 and 16:00 LST. Diurnal variations of CO and $PM_{10}$ were similar to $NO_2$ while $SO_2$ was similar to $O_3$. Seasonal variations of $PM_{10}$ in both cities indicated that their concentrations during spring season were significantly high. Asian dust storms occur frequently during spring and seem to affect increase in $PM_{10}$. High $O_3$ and $PM_{10}$ days were selected from both cities. The analyses based on the HYSPLIT trajectory model during the high $O_3$ and $PM_{10}$ showed these episodes (six cases) were mostly coincident with Asian dust storm originated from northern China and Mongolia. However, these high air pollution episodes in the west coastal cities may not only be caused by the Asian dust but also affected by other air pollutants transported from China accompanying the Asian dust.

Long-term Trend Analysis of Korean Air Quality and Its Implication to Current Air Quality Policy on Ozone and PM10 (국내 기준성 대기오염물질의 권역별 장기 추이 및 원인 분석: PM10과 오존을 중심으로)

  • Kim, Jeonghwan;Ghim, Young Sung;Han, Jin-Seok;Park, Seung-Myung;Shin, Hye-Jung;Lee, Sang-Bo;Kim, Jeongsoo;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Nation-wide systematic and comprehensive measurements of air quality criteria species have been made over 340 sites currently in Korea since 1990. Using these data, temporal and spatial trends of $SO_2$, $PM_{10}$, $NO_2$, $O_3$, CO and $O_x(NO_2+O_3)$ were analyzed to characterize and evaluate implementing efficiency of air quality policy and regulations. Due to strict and effective policy to use cleaner fuels in late 1980s and 1990s, the primary pollutants, such as $SO_2$, CO, and $PM_{10}$ decreased sharply by early 2000s in all parts of Korea. After this period, their concentrations declined with much lower rates in most parts of Korea. In addition, isolated but noticeable numbers of places, especially in major ports, newly developing towns and industrial parks, sustained high levels or even showed further degradation. Despite series of emission control strategies were enforced since early 1990s, $NO_2$ concentrations haven't changed much till 2005, due to significant increase in number of automobiles. Nevertheless, we confirmed that the staggering levels of $NO_2$ and $PM_{10}$ improved evidently after 2005, especially in Seoul Metropolitan Area (SMA), where enhanced regulations for $NO_2$ and $PM_{10}$ emissions was imposed to automobiles and large emission sources. However, their decreasing trends were much lessened in recent years again as current air quality improvement strategies has been challenged to revise further. In contrast to these primary species, annual $O_3$, which is secondary product from $NO_2$ and volatile organic compounds (VOCs), has increased consistently with about 0.6 ppbv per year in every urban part of Korea, while yearly average of daily maximum 8-hour $O_3$ in summer season had a much higher rate of 1.2 ppbv per year. Increase of $O_3$ can be explained mainly by reductions of NO emission. Rising background $O_3$ in the Northeast Asia and increasing oxidizing capacity by changing photochemistry were likely causes of observed $O_3$ increase. The future air quality policy should consider more effective ways to lower alarming level of $O_3$ and $PM_{10}$.

PM10 and CO2 Concentrations in the Seoul Subway Carriage (서울 지하철 객차 내 PM10과 CO2의 농도 변화)

  • Sohn, Hong-Ji;Ryu, Kyong-Nam;Im, Jong-Kwon;Jang, Kyung-Jo;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.454-460
    • /
    • 2009
  • The subway is the major public transportation system in Seoul with 2.2 million people using it everyday. Indoor air pollution in the subway can be a significant part of population exposure because of the number of people using the subway, time spent in transit and potentially high exposure for certain pollutants. The Korea Ministry of Environment has established the level 2 of recommended standards of $PM_{10}$ and $CO_2$ in subway trains. The aims of this study were to determine the airborne levels of $PM_{10}$, $CO_2$ and any correlation between pollutant levels and number of passenger in a subway train. The airborne $PM_{10}$ and $CO_2$ were measured on the inside of trains on line #4 for 4 different days from October to November in 2008. Average $PM_{10}$ and $CO_2$ levels were $113{\pm}25{\mu}g/m^3$ and $1402{\pm}442$ ppm, respectively. These levels did not exceed the level 2 of recommended standards of $250{\mu}g/m^3$ for $PM_{10}$ and 3500 ppm for $CO_2$. $PM_{10}$ level was not correlated with the number of passengers, while $CO_2$ levels were positively correlated with the number of passengers. The findings suggested that $PM_{10}$ in subway trains may have sources other than those directly associated with the number of passengers.

Characteristics of PM10, PM2.5 and CO2 Concentration in Public Transportations and Development of Control Technology (대중교통수단에서 PM10, PM2.5 및 CO2의 농도 현황과 저감기술 개발에 관한 연구)

  • Park, Duck Shin;Kwon, Soon Bark;Cho, Young Min;Jang, Seong Ki;Jeon, Jae Sik;Park, Eun Young
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • This study examined the concentration level of the major air pollutants in public transportation. The study was conducted between February 2009 and March 2008 at Suwon-Yeosu line in Korea. $PM_{10}$ concentration level was $100{\mu}g/m^3$ on average. The $PM_{2.5}$ to PM10 ratio in transport is 0.37, which was lower than the results published by other researches. The result also demonstrated that outdoor $PM_{10}$ concentration was about 56~60% level compared to that of the cabin. $CO_2$ concentration level in the cabin was 1,359ppm, which does not exceed 2,000ppm, which is the guideline concentration level according to the Ministry of Environment. $CO_2$ concentration level in the cabin was $CO_2=23.4{\times}N+460.2$, and about 23.4ppm in $CO_2$ concentration level increased every time one passenger was added on. The experiment conducted on the train demonstrated that the average $PM_{10}$ concentration level was $100{\mu}g/m^3$ in case of the reference cabin while average $PM_{10}$ concentration level of the modified vehicle was $68{\mu}g/m^3$. Likewise, effect of the particle reduction device for the reduction of $PM_{10}$ concentration level was approximately 21%. Meanwhile there was almost no difference in the concentration level between reference and modified cabin in case of $PM_{2.5}$. Using zeolite as an adsorbent was made to reduce the $CO_2$ concentration level in the cabin. Number of passengers was factored in, to calculate the effect of the adsorption device, which demonstrated that about 36% of $CO_2$ concentration level was reduced in the modified cabin effect of the $CO_2$ reduction device. This research analyzed the current status concerning the quality of air in the public transportation and technologies were developed that reduces major air pollutants.

Analysis on the PM10 Transportation Route in Gimhae Region Using the HYSPLIT Model (HYSPLIT 모델을 이용한 김해지역의 PM10 수송 경로 분석)

  • Jung, Woo-Sik;Park, Jong-Kil;Lee, Bo-Ram;Kim, Eun-Byul
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1043-1052
    • /
    • 2013
  • This study was conducted to investigate the correlations between the $PM_{10}$ concentration trend and meteorological elements in the Gimhae region and analyze the transportation routes of air pollutants through back-trajectory analysis. Among the air quality measuring stations in the Gimhae regions, the $PM_{10}$ concentration of the Sambangdong station was higher than that of the Dongsangdong station. Also, an examination of the relationships between $PM_{10}$ concentration and meteorological elements showed that the greater the number of yellow dust occurrence days was and the lower the temperature and precipitation were, the higher the $PM_{10}$ concentration appeared. Furthermore, a cluster analysis through the HYSPLIT model showed that there were 4 clusters of trajectories that flowed into the Gimhae region and most of them originated in China. The meteorological characteristics of the four clusters were analyzed and they were similar to those of the air masses that influence South Korea. These analyses found that meteorological conditions affect the $PM_{10}$ concentration.

Analysis of Reduction Strategies for Air Pollutants Discharged from Emission Sources and their Impact on the Seoul Metropolitan Area

  • Lee, Woo-Keun;SunWoo, Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The Korean government enacted the "Special Law for Improving Air Quality of Metropolitan Area" in 2003. According to this plan, Korean government plan to lower the concentrations of $PM_{10}$ and $NO_x$ to $40{\mu}g/m^3$ and 22 ppb, respectively, by 2014. In this study, we analyze emission reduction strategies to lower their concentration. Emission reduction for the supply of mass energy and regenerative energy are compared with several scenarios. According to the results, 713 t/y of $NO_x$ and 165 t/y of $PM_{10}$ will be reduced by enhancing the number of households supplied by local heating and air conditioning. And also 5 t/y of $PM_{10}$ and 312 t/y of $NO_x$ will be reduced by replacing conventional energy with solar energy by 2014.

Relationship Between Exposure to Air Pollutants and Aggravation of Childhood Asthma : A Meta-Analysis (메타분석을 적용한 대기오염과 소아 천식 관련 입원의 상관성 평가 연구)

  • Cho, Yong-Sung;Kim, Ho;Lee, Jong-Tae;Hyun, Youn-Joo;Kim, Yoon-Shin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.425-437
    • /
    • 2001
  • This study is based on the uses meta-analysis methodology to examine the statistical consistency and importance of random variation among results of epidemiologic studies between air pollutants exposure and childhood asthma. Studies for this meta-analysis were conducted by reviewing previous results and by asking researcher active in this field for recommendations. Overall, 10 cases of air pollutants exposures and childhood asthma were reviewed. A variety of statistical methods for meta-analysis have been used to assess the combined effects, to identify heterogeneity, and to provide a single summary risk estimate based on a set of simiar epidemiologic studies. In this study, classification of exposure metircs on air environmental epidemiologic studies are reported for (1) aggravation of childhood asthma by a 50 ppb increase SO$_2$(6 individual studies); (2) aggravation of childhood asthma by a 50 ppb increase NO$_2$(5 individual studies); (3) aggravation of childhood asthma by a 50 ppb increase $O_3$(7 individual studies); (4) aggravation of childhood asthma by a 10$\mu\textrm{g}$/m$^3$increase PM$_{10}$ (4 individual studies); (5) aggravation of childhood asthma by a 1 ppm increase CO (2 individual studies); and (6) comparison of results between a Korean study results and this meta-analytic study. Results of this study indicated that an inverse-variance weighted pooling of the hospital admission risk at a 1ppm increment of CO levels was 1.12% (95% CI : 1.01 ~ 1.24). The hospital admission risk was estimated to increase 5% (95% CI : 1.02~1.08), 6%(95% CI : 1.04~1.09), and 5% (95% CI : 1.02~1.09) with each 50ppb increase of SO$_2$, NO$_2$, and $O_3$, respectively. In addition, our results lead to a small but significant elevation in risk of 2% (RR = 1.02, 95% CI = 1.01~1.04) with each 10$\mu\textrm{g}$/m$^3$increase of PM$_{10}$ among 4 individual studies. We found a small elevation in risk of childhood asthma, and pooled results of 10 epidemiologic studies of childhood asthma using increase a cut-off-point levels of air pollutants showed a few pieces of evidence. The results of this meta-analysis suggested that air pollution associated with an increased incidence of childhood asthma. According to this study, relationship between exposure to air pollutants and childhood asthma in Korea seem to be high than results of this meta-analysis.sis.

  • PDF