• Title/Summary/Keyword: Air lift reactor

Search Result 24, Processing Time 0.026 seconds

Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors (기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산)

  • 조대철;정봉현;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

Continuous Ethanol Fermentation in Air-lift Reactor by Flocculent Saccharomyces cerevisiae CA-1 (응집성 Saccharomyces cerevisiae CA-1에 의한 에탄올 연속발효)

  • Lee, Yong-Bum;Shim, Sang-Kook;Han, Myun-Soo;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.717-722
    • /
    • 1995
  • Using a flocculating Saccharomyes cerevisiae CA-1, an air-lift reactor equipped with a modified settler was used for ethanol fermentation. The effects of conditions such as aeration rate, initial glucose concentration, and dilution rate were studied using the air-lift reactor. In batch fermentation, optimum aeration rate was 0.5 vvm. In continuous fermentation, aeration rate and initial pH were fixed 0.5 vvm and 4.5, substrate concentration and dillution rate were changed 10-15% and 0.1-1.3. The maximum ethanol productivity was shown to be 20.4 g/l$\cdot $h in 10% glucose and 0.7 h$^{-1}$ dilution rate., and optimum operation condition considering the ethanol productivity and glucose utilization ratio was 0.5 h$^{-1}$ dilution rate in 10% glucose concentration.

  • PDF

Phenol Removal by Peroxidases Extracted from Chinese Cabbage Root (배추 뿌리의 Peroxidase를 이용한 Phenol의 제거)

  • 김영미;한달호
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.335-342
    • /
    • 1995
  • Solid and liquid phase peroxidases were extracted from Chinese cabbage roots by using commercial juicer in order to use peroxidases from agricultural waste for industrial applications. Since peroxidases are distributed into 66% in liquid (juice) and 34% in solid phase (pulp), enzymes from both phases were applied to investigate the enzymatic removal of phenol from waste water. After contacting 150 ppm Phenol solution with liquid phase enzyme (1,800 unit/$\ell$) for 3 hours in a batch stirred reactor, 96% of phenol could be removed through polymerization and precipitation. Also, phenol could be removed from initial 120ppm to 5ppm by applying solid phase enzyme in an air lift reactor ($600 unit/\ell$). Almost equivalent efficiencies of phenol removal were observed between two systems, even though only one third of the enzymes in batch stirred reactor was applied in airlift reactor. The possible reason for this phenomenon is because peroxidases exist as immobilized forms in solid phase.

  • PDF

Wastewater Treatment using Air-lift Biofilm Reactor (공기부상 생물막 반응기를 이용한 산업폐수 처리)

  • 최광수;한기백
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.351-367
    • /
    • 2000
  • Air-lift biofilm reactor should be an admirable process substituting conventional activated sludge process, because of its small area requirement as well as high volumetric loading capacity and stability against loading and chemical shocks. However most of the past research on the performance of ABR was focused on the sewage treatment. This research studied the applicability of ABR to treat high strength wastewater. A bench-scale ABR was operated to treat high strength synthetic wastewater, tannery wastewater and petrochemical wastewater, and its applicability was conclusive In case of synthetic wastewater, ABR showed good performance in which the substarate removal efficiency was higher that 80% even under short HRT(1.4 hr) and high volumetric loading rate(9.3 kgCODcr/$m^3$.day). When ABR was applied to treat tannery wastewater, it was suggested that the maximum volumetric loading rate and F/M ratio should be 7.7kgCODcr/$m^3$.day, 0.76 $day^{-1}$, respectively. And high substrate removal efficiency over than 90 % was observed with 4,000 mgCODcr/L of petrochemical wastewater. Even though effluent concentration was quite high, ABR should be applicable to treat the high strength wastewater, because of its high loading capacity.

  • PDF

A Study on Applying PID Control to a Downdraft Fixed Bed Gasifier using Wood Pellets

  • Park, Bu-Gae;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.149-159
    • /
    • 2022
  • Biomass is material that is comprehensive of carbonaceous materials from plants, crops, animals, and algae. It has been used as one of heating fuel since the beginning the emergence of human beings. Since biomass is regarded as carbon-neutral energy source, it has recently been attracting attention as an energy source that can replace fossil fuels. The most widely applied field is distributed power generation, and a method of generating electric power by driving an internal combustion engine with syngas produced by gasifier is chosen. While the composition of the syngas produced in gasifiers changes depending on the air flowing into the reactor, commercialized gasifiers so far do not control the air flowing into the reactor. When the inner pressure in reactor increases, the air sucked into the reactor is reduced. That change of amount of air makes the composition of syngas varied. Those variations of composition of syngas cause the incomplete combustion hence the power output of engine drops, which is a critical weakness of the gasification technology. In this paper, to produce the uniformly composed syngas, PID control is applied. The result was shown when the amount of air into the reactor is supplied with the constant amount using PID control, the standard deviation of caloric values of syngas is around 2[%] of its average value. Meanwhile the gasifier without PID control has the standard deviation of caloric values is around 7[%]. Therefore, Adopting PID control to supply constant air to the gasifier is highly desirable.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.

Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow (이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구)

  • Kim, San;Chung, Ji Hong;Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.