• Title/Summary/Keyword: Air layer effect

Search Result 452, Processing Time 0.032 seconds

Effect of Air Additions on the Growth Characteristics of the Compound Layer during Oxynitriding in50%NH3+Air+N2 Atmosphere (50% NH3-Air-N2가스분위기에서 Oxynitriding시 Compound Layer의 성장 특성에 미치는 공기첨가효과)

  • Kim, Y.H.;Lee, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.206-218
    • /
    • 1994
  • In 50%$NH_3+Air+N_2$ atmospheres, the effect of air additions on the growth characteristics of the compound layer during oxynitriding at $570^{\circ}C$ for 2hr in carbon and alloy steels has been investigated. The ammount of apparent residual ammonia during oxynitriding has shown to be increased with air additions(9~36 Vol. %) and X-ray diffraction analysis of case oxynitreded has shown that the compound layer consist of ${\varepsilon}-Fe_{2-3}$(N, C) phase and ${\gamma}^{\prime}-Fe_4$(N,C) phase. In the case of carbon steels, the thickness of oxide layer, compound layer and porous layer and the amount of ${\varepsilon}-Fe_{2-3}$(N,C) phase in the compound layer were increased with additions of air in 50%$NH_3+N_2$ atmospheres. At the same gas composition, the thickenss of oxide layer, compound layer and porous layer in alloy steels showed slightly thin layer thickness compared to those of carbon steels and the ${\gamma}^{\prime}-Fe_4$(N,C) phase in the compound layer of alloy steels was found barely. Therefore, the most obvious effect of air addition in the gas nitriding atmosphere has been found to in crease further kinetics of nitriding reaction.

  • PDF

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Numerical Analysis of Optimum Air-Layer Thickness in a Double Glazing Window (이중창 공기층의 최적두께에 관한 수치해석)

  • Hwang Ho June;Choi Hyoung Gwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Double pane window system, in which an air layer with a finite width is filled between glasses, is used in order to increase the insulation efficiency. In the present study, a conjugate heat transfer problem of a double pane window system has been studied numerically in order to investigate the effect of an air layer on the heat transmittance of the double pane window system using a finite element method based on P2P1 basis function. In this study on the conjugate heat transfer of a double pane window system, numerically predicted Nusselt numbers with or without conjugate heat transfer effect have been compared with an available existing empirical formula. It has been found that a Nusselt number from an existing formula for an enclosed space is different from that obtained from the present conjugate heat transfer analysis mainly due to the effects of a very high aspect ratio and conjugate heat transfer mechanism. Furthermore, it has been shown that the numerically estimated optimal air thickness of the double pane window system with conjugate heat transfer effect is a little bit longer than that obtained without considering conjugate heat transfer effect.

Thermal Insulation Property due to Internal Air-layer Content of Warm Multi Layer Materials by using Numerical Analysis (수치해석을 이용한 다겹보온자재의 내부공기층 함유에 따른 보온 특성)

  • Chung, Sung-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.97-103
    • /
    • 2012
  • This study investigates thermal insulation properties of multi layer materials depending on thickness of air layers. Numerical analysis on the heat flow of different insulating materials was conducted to identify whether their temperature distributions demonstrate the reduced rate of heat transfer conclusively or not. Analytical model is divided into two categories. One is to distinguish temperature distribution of the air-layer materials from the non-air layer ones. The other is to compare the efficacy between eight-layered insulating materials with no air-layer contained and three-layered insulating materials which include an air-layer definitely. In the latter case, the identical thickness is assigned to each material. The effect of thermal insulation by including an air-layer is verified in the first analytical model. The result of the second model shows that the insulation of the eight-layered materials is coterminous at the three-layered ones with an air-layer and the thermal insulation of the two materials is imperceptible. The benefits of cost and energy saving are anticipated if air-layers are efficiently incorporated in multi layer insulating materials in a greenhouse.

A Study on the Air Pollution Potential in the Central Part of Korea (中部地方 各地의 大氣汚染潛在力에 관한 硏究)

  • 李鍾範
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 1991
  • Air pollution potentials of the 7 cities in the central part of Korea were obtained with the mean wind speed within the mixed layer and the mixed layer height calculated by the Jump Model. Seasonal variation of the afternoon mixed layer height in Seoul area shows that low in winter and high in summer. Annual mean of the morning air pollution potential was lowest in Incheon and highest in Wonju. On the other hand annual mean of the afternoon air pollution potential was lowest in Incheon and highest in Chuncheon. Relatively low air pollution potential in Incheon can be explained as high mixed layer height and the effect of sea breeze.

  • PDF

Structural Control of the Compound Layers formed during Nitrocarburising in NH3-Air-C3H8 Atmospheres (NH3-Air-C3H8 분위기에서 Nitrocarburisng시 형성된 Compound Layer의 조직제어)

  • Kim, Y.H.;Choi, K.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.289-301
    • /
    • 1995
  • The effect of Air/$C_3H_8$ gas addition on the compound layer growth of steels nitrocarburised in $NH_3+Air+C_3H_8$ mixed gas atmospheres was investigated. It is considered that amount of residual $NH_3$ was varied according to alternation of Air/$C_3H_8$ mixing ratio and volume content. The compound layer formed from nitrocarburising was composed of ${\varepsilon}-Fe_{2-3}$(C, N) and ${\gamma}^{\prime}-Fe_4$(C, N). According as Air/$C_3H_8$ mixing ratio increased, the superficial content of ${\gamma}^{\prime}-Fe_4$(C, N) within the compound layer was increased, at the same time the growth rate of compound layer and porous layer was increased. In the case of alloy steel at the fixed gas composition, the growth rate of compound layer and porous layer was worse than carbon steel and compound layer phase composition structure primarily consisted of E phase. As the carbon content of materials was increasing in the given gas atmospheres, the growth rate of compound layer and porous layer was increased and the superficial content of ${\varepsilon}-Fe_{2-3}$(C, N) within the compound layer was increased.

  • PDF

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate (무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

The effect of air velocity on the thermal resistance of wool ensembles (풍속변화에 따른 순모의류의 온열특성)

  • 송민규;전병익
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF