• 제목/요약/키워드: Air jet

검색결과 939건 처리시간 0.031초

장대형 터널 내 제트 팬 위치에 따른 환기해석 (Ventilation Analysis according to Jet Fan Location in Long Tunnel)

  • 강신형;변주석;이진호
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.386-393
    • /
    • 2007
  • This paper studies the ventilation characteristics according to the jet fan location at the long road tunnel using the CFD software 'FLUENT' which is based on the finite volume method. The tunnel model used in the analysis has a length of 1600m, a cross sectional area of $120m^3$, and is composed of 3 lanes and one way. The velocity profile, the distribution of CO concentration and the ventilation flow rate within the tunnel are analyzed, respectively. In the analysis, it is found that the dependence of the ventilation flow rate upon the jet fan location is small, but the CO concentration in the tunnel is at the lowest when the jet fans are installed near the tunnel outlet. An air stream right below the jet fan is almost inactive due to the strong stream injection near the jet fan. Thus, the pollution level below the jet fan must be higher than the other area.

회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구 (Heat transfer characteristics between a rotating flat plate and an impinging water jet)

  • 전성택;이종수;최국광
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

충돌수분류에 의한 벽면분류 영역에서의 전열특성 (Heat Transfer Characteristics in Wall Jet Region with Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제13권1호
    • /
    • pp.14-21
    • /
    • 1984
  • The purpose of this investigation is to study heat transfer characteristics in wall jet region on a flat plate caused by upward impinging water jet. In the wall jet region, heat transfer results by impinging water jet are being compared with the ones with supplementary water. As the radius increases, the heat transfer coefficient in the wall jet region consquently decreases, but decreasing nozzle-heat plate distance, the reduction rate increases. The experimental equation is expressed as follows : $$\frac{N_{ur}}{P_r^{0.4}}{\cdot}\overline{\xi}=m(\overline{\eta}{\codt}Re{\delta})^n,\;m=0.034\~0.056,\;n=1.74\~2.007$$ The optimum height of supplementary water is obtained to improve heat transfer effect of wall jet region.

  • PDF

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An experimental study on cooling characteristics of mist impinging jet on a flat plate)

  • 전상욱;정원석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

공기분사 기법을 이용한 충돌형 제트 분사기의 연소 안정성 평가에 관한 수치적 연구 (A Numerical Study on Combustion-Stability Rating of Impinging-Jet Injector Using Air-Injection Technique)

  • 손채훈;박이선
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1093-1100
    • /
    • 2006
  • Combustion stability rating of jet injector is conducted numerically using air-injection technique in a model chamber, where air is supplied to oxidizer and fuel manifolds of the model five-element injector head. A sample F(fuel)-O(oxidizer)-O-F impinging-jet injector is adopted. In this technique, we can simulate mixing process of streams flowing through oxidizer and fuel orifices under cold-flow condition without chemical reaction. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. From numerical data, unstable regions can be identified and they are compared with those from air-injection acoustic and hot-fire tests. The present stability boundaries are in a good agreement with experimental results. The proposed numerical method can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

Effect of air-jet texturing conditions on the physical properties of split-type ultrafine P/N filaments

  • Lee Eun-Ju;Bok Jin-Seon;Ju Chang-Hwan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.394-397
    • /
    • 1998
  • Characteristics of air-jet textured yarns are determined by linear density, strength, and instability together with structural properties. Such characteristics are affected by various processing parameters and supply yam properties. In this Paper, specially, we have studied on the effect of air jet texturing conditions not only on texturing characteristics but also on splitting behavior using split-type ultrafine P/N filaments and their draw textured yarns as raw materials. (omitted)

  • PDF

Y-JET 2-유체 분무노즐 내부유동의 모델링 (Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer)

  • 인왕기;이상용;송시홍
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구 (A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet)

  • 백승철;권순범;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구 (A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet)

  • 백승철;권순범;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.562-567
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF