• 제목/요약/키워드: Air handling unit

검색결과 78건 처리시간 0.025초

Calculation of Outdoor Air Fraction through Economizer Control Types during Intermediate Season

  • Hong, Goopyo;Hong, Jun;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.13-19
    • /
    • 2016
  • Purpose: In this study, we examined outdoor air fraction using historical data of actual Air Handling Unit (AHU) in the existing building during intermediate season and analyzed optimal outdoor air fraction by control types for economizer. Method: Control types for economizer which was used in analysis are No Economizer(NE), Differential Dry-bulb Temperature(DT), Diffrential Enthalpy(DE), Differential Dry-bulb Temperature+Differential Enthalpy(DTDE), and Differential Enthalpy+Differential Dry-bulb Temperature (DEDT). In addition, the system heating and cooling load were analyzed by calculating the outdoor air fraction through existing AHU operating method and control types for economizer. Result: Optimized outdoor air fraction through control types was the lowest in March and distribution over 50% was shown in May. In case of DE control type, outdoor air fraction was the highest of other control types and the value was average 63% in May. System heating load was shown the lowest value in NE, however, system cooling load was shown 1.7 times higher than DT control type and 5 times higher than DE control type. For system heating load, DT and DTDE is similar during intermediate season. However, system cooling load was shown 3 times higher than DE and DEDT. Accordingly, it was found as the method to save cooling energy most efficiently with DE control considering enthalpy of outdoor air and return air in intermediate season.

에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교 (Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units)

  • 신동호;우창규;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

Lead Exposure Indices, Workloads, and Environmental Factors in Battery Manufacturing Workplace

  • Cho, Kwang Sung;Jeong, Byung Yong
    • 대한인간공학회지
    • /
    • 제32권3호
    • /
    • pp.259-266
    • /
    • 2013
  • Objective: This study aims to evaluate the workloads of industrial and automobile storage battery industries and their association to biological exposure indices. Background: Occupational lead exposure at battery manufacturing workplace is the most serious problem in safety and health management. Method: We surveyed 145 workers in 3 storage battery industries. Environmental factors(lead in air, temperature, humidity and vibration)), biological exposure indices(lead in blood and zinc protoporphyrin in blood) and individual workload factors(process type, work time, task type, weight handling and restrictive clothing) were measured in each unit workplace. Results/Conclusion: Air lead concentration is statistically significant in associations with workload factors(process type, work time, task type, and restrictive clothing) and environmental factors (humidity and vibration), whereas zinc protoporphyrin in blood are significantly associated with work time and weight handling. And lead in blood is significantly associated with work time, weight handling and temperature. Application: The results of this study are expected to be a fundamental data to job design.

에어밸런서 공압 회로의 설계 및 성능 실험 (Pneumatic circuit design and Performance test of Air balancer)

  • 김동수;배상규
    • 유공압시스템학회논문집
    • /
    • 제3권3호
    • /
    • pp.20-24
    • /
    • 2006
  • Air balancer is a conveyance cargo-handling machine, used in assembly and process lines of car and machining industries. This can lift up an object, the weight of which is from 5 to 200 kg, and moves it to a position. As industrial technologies evolve, it is required to move an object and fit it into a specified position with greater accuracy, rather than performing simple tasks such as lifting objects up and down as conventional ones do. There is also a demand to handle an object with one hand, rather than with two hands,. Through designs of manifold unit for an air balancer function, pilot regulator unit to keep pressure constant, hand unit for an accurate load perception function, and air balancer circuit, this study enables everybody to work it with ease and convenience. Experiments and comparisons were conducted for the performance evaluation of the circuit.

  • PDF

신경망을 이용한 실시간 고장 진단 시스템 (On-Line Fault Diagnosis System using Neural Network)

  • 김문성;유승선;소정훈;곽훈성
    • 한국통신학회논문지
    • /
    • 제26권11C호
    • /
    • pp.75-84
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 실시간 고장 검출 및 진단(FDD : Fault Detection and Diagnosis) 시스템을 제안한다. 제안된 시스템은 공조 시스템(FDD : Air Handling Unit)에서 발생 가능한 여러 고장들을 검출하고 진단할 수 있다. 고장 검출 및 진단 기법으로 3층 구조의 전방향(feed-forward) 신경망을 사용하였고, 여기에 사용된 학습 방법은 역전파(back-propagation) 학습 알고리즘이다. 공조 시스템에 적용된 실시간 고장 검출 및 진단 시스템은 비주얼 C++와 비주얼 베이직을 사용하여 구현하였다. 제안된 고장 검출 및 진단 시스템을 실제 운전 중인 공조 시스템에 적용하여 실험하였고, 정확한 고장 검출 및 진단이 수행됨을 실험 결과로서 입증하였다.

  • PDF

은나노 소재를 이용한 공조기의 탈취 성능 향상에 관한 실험적 연구 (An Experimental Study on the Deodorization Performance Enhancement of the Air Handling Unit Using a Nano-Silver Material)

  • 남상엽;강병하;송지현;한성
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.739-744
    • /
    • 2009
  • The filter has long been used in purification processes for indoor air quality. To determine the deodorization effect of several filter materials in a full-scale air-handling system, the present study has been carried out using a wind tunnel equipped with a heat exchanger and various filter materials, such as commercial fabric, activated carbon(AC) and silver nano-particles attached to activated carbon(Ag-AC). The experiment was conducted using an odor substance with ammonia, acetaldehyde, acetic acid. The results obtained indicate that odor substance is substantially decreased on the moisture condensation on the surface of the heat exchanger. The fabric filter has no effect for removal of odor substances. The deodorization efficiency is found to be approximately 7% in the AC filter, while the deodorization efficiency is increased up to 10% using the Ag-AC filter.

  • PDF

Neuron Chip을 이용한 공기조화설비 제어모듈 개발 (A Novel Development of Distributed intelligent Control Module Based on the LonWorks Neuron Chip for Air handling Units in the Heating, Ventilating and Air Conditioning)

  • 홍원표;김동화;김중곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.251-257
    • /
    • 2003
  • In this paper, a new distributed intelligent control module based on LonWorks fieldbus for air handling unit(AHU) of heating, ventilating and air-conditioning(HVAC) is proposed to replace with a conventional direct digital control(DDC) with 32 bit microprocessor. The proposed control architecture has a excellent features such as highly compact and flexible function design, a low priced smart front-end and reliable performance with various functions. This also addresses issues in control network configuration, logical design of field devices by S/W tool, Internet networking and electronic element installation. Experimental results showing the system performance are also included in this paper.

  • PDF

슬래브축열 공조시스템의 축열성능에 관한 실험적 연구 (An Experimental Study on Thermal Storage Performance of an Air Conditioning System with Slab Thermal Storage)

  • 정재훈;신영기
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.427-435
    • /
    • 2005
  • This paper investigates the thermal storage performance of the office building which has adopted an air conditioning system with its slab structure as a regenerator. Four cases of the thermal storage performance experiment were conducted. Room air temperatures, floor slab temperatures, temperatures around the air conditioning unit were logged and analyzed. The load handling capacity of the air conditioning unit and the amount of heat stored in the slab were decided from those experiments. Several efficiencies were investigated to evaluate the performance of the thermal storage. The results concluded that the slab as a regenerator is very effective in cutting down peak loads of the office building.