• Title/Summary/Keyword: Air gun

Search Result 486, Processing Time 0.03 seconds

A Design of Air-Lubricated Slider Bearings for Improving the Flying Stability in Track Seek and Increasing the Air-Bearing Stiffness (트랙탐색 안정성과 베어링 강성 향상을 위한 공기윤활 슬라이더 베어링의 최적설계)

  • Kang, Tae-Sik;Park, No-Yeol;Lee, Sung-Chang;Choi, Dong-Hoon;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1561-1569
    • /
    • 2000
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

  • PDF

Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor by Using Impact Test (임팩트 테스트를 이용한 초고속 회전체용 공기 포일 베어링의 동특성 계수 측정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • MTG(Micro turbine generator) operating at 400,000 rpm is under development and the impact test rig to measure the dynamic stiffness and damping coefficient of air foil bearing for high speed rotor is presented in this study. The stiffness and damping coefficient of air foil bearing depending on the rotational speed can be measured easily and effectively by using the simple configuration of impact test rig which is composed of air gun, gap sensors and high speed motor. The estimation results of stiffness and dampling coefficient using least square estimation method is presented as well.

Study of Hydrogen Combustion with n Gun-type Burner (건타입 버너의 수소 연소에 관한 연구)

  • Lee, Young-Lim;Lee, Kum-Bae;Sim, Kyu-Sung;Jun, Yong-Du;Ryu, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1579-1586
    • /
    • 2003
  • A gun-type burne. fur a LPG(Liquified Petroleum Gas) boiler was utilized for hydrogen combustion. The study was performed to obtain fundamental data prior to the design of a very low NO$\_$x/, hydrogen-fueled burner. First, numerical simulations were performed to predict mixing characteristics between air and fuel flows, and temperature distributions, etc. Experimental study was then performed to find out flame lengths, temperature distributions, and NO$\_$x/ concentrations. The results showed that a gun-type burner for a LPG boiler can be successfully used for hydrogen combustion without any major retrofitting. The hydrogen flame was very stable and 75 ppm of NO$\_$x/ in average was observed for the conditions considered in this study. Hydrogen combustion could be therefore a solution to avoid the problem of green-house gas(CO$_2$) if hydrogen becomes cost-effective.

Influence of Particle Properties of Crushed Sand on the Qualities of Concrete (부순모래의 입자특성이 콘크리트의 품질에 미치는 영향)

  • Yoo Seung-Yeup;Sohn Yu-Shin;Lee Seung-Hoon;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.89-92
    • /
    • 2005
  • This study investigates influence of particle properties of crushed sand on the duality of concrete. The test shows that an increase of fineness modulus(FM) resulted in high slump and air contents, while compressive strength decreased due to decreased adhesion with reduction of surface area. As grain shape become rounder, the slump of concrete increased, due to reduction of internal friction, and increased air contents. The reduction of adhesion by abrasion of surface declined compressive strength during the process of manufacturing crushed sand. Increase of powder contents decreased slump and it also decreased air contents due to the effect of filling air void. In addition. using powder contents increased compressive strength, but could not find any difference of bleeding and tensile strength with particle properties.

  • PDF

Air Flow and Heat Storage Performance of Solar-Heated Greenhouse with Rock Bed Storage (자갈축열 태양열 온실의 공기유동 및 축열 성능)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-280
    • /
    • 2001
  • The purpose of this study was to investigate the air flow characteristics of the rock bed storage for solar-heated greenhouse design. Heat storage material was gravels and experiments were performed under constant inside temperature condition. The experimental parameters were operation method and air flow rate of fan. It was resulted that the temperature and amount of heat stored in rock-bed increased as the increase of air flow velocity and were more influenced by operation of inlet fan than outlet fan.

  • PDF

The Effect of Air Pollutant to Fuel Cell Electric Vehicle (대기오염물질로 인한 연료전지자동차 출력 변화에 대한 연구)

  • Rhee, Jun-Ki;Park, Sang-Sun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.154-157
    • /
    • 2009
  • Fuel cell is spotlighted as next energy source of future. The fuel of vehicle will be changed from fossil fuel such as gasoline, diesel to hydrogen. Polymer electrolyte membrane fuel cell(PEMFC) will be used to fuel cell vehicle because of its suitability. PEMFCs need oxygen for cathode. Because PEMFCs in vehicle use air for oxygen, air pollutant will be effect to performance of PEMFC. In this study, we examine a type of filter and pollutant gas how can be effect to performance of fuel cell electric vehicle.

  • PDF

A Study of Air Freshing by UV lamp and TiO2 Catalyst (UV lamp와 TiO2 광촉매를 이용한 공기 정화에 관한 연구)

  • Lee, Gun-Duck;Woo, In-Sung;Hwang, Myung-Hwan;Lee, In-Buk;Kim, Kwan-Jung;Park, Hwa-Young
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.205-227
    • /
    • 2011
  • On this study, the test for air-purification was executed as using the UV lamp and the UV lamp on which the TiO2 catalyst had been deposited with glass fiber in the reactor chamber. It aimed at the basic data of air-purifier as assessing the features of removing abilities for various contaminants including CH3COOH, NH3, NO, and SO2 as varying the number of TiO2 coating, the wave of UV lamp, and the amount of additive CaO as variables.

  • PDF

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.