• 제목/요약/키워드: Air gap

검색결과 1,449건 처리시간 0.034초

United Electromagnetic Characteristics and Online Monitoring Method of Static Air-gap Eccentricity of Turbo-Generator

  • Tang, Gui-Ji;Ke, Meng-Qiang;He, Yu-Ling;Wang, Fa-Lin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1614-1627
    • /
    • 2016
  • The purpose of this paper is to investigate the united Electromagnetic characteristics for the effective monitoring on the static air-gap eccentricity (SAGE) of turbo-generator. Different from other studies, this paper not only studies on the unbalanced magnetic pull (UMP) and the vibration characteristics of the stator and the rotor, but also investigates the harmonic features of the magnetic flux density and the circulating current inside the parallel branches (CCPB). The theoretical calculation, together with the finite-element-method (FEM) simulation and the experiment verification, is taken for a SDF-9 type non-salient generator. It is shown that, when SAGE occurs, apparent double-frequency UMP and vibrations will be produced both on the stator and the rotor, while the CCPB will have an obvious increment at the $1^{st}$ harmonic component. In addition, the amplitude of the magnetic flux density will be of cosine distribution in the circumferential position of the air-gap, while in normal condition it is a constant. Moreover, the pass-band amplitude, together with the $1^{st}$ harmonic of the magnetic flux density, will be enlarged as well. These united electromagnetic characteristics can be used as the diagnosis and monitoring criterion for SAGE.

Analysis of the Transient State of the Squirrel Cage Induction Motor by Means of the Magnetic Equivalent Circuit Method

  • Jeong Jong-Ho;Lee Eun-Woong;Cho Hyun-Kil
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.34-38
    • /
    • 2005
  • The finite element method is very flexible for new shapes and provides flux distribution, magnetomotive force, eddy currents, and torques. However, it requires lengthy computational time in order to achieve desired accuracy. The magnetic equivalent circuit method takes less computation time than the finite element method. Therefore, the finite element method is mainly used to confirm the completed design. The magnetic equivalent circuit method is convenient for complicated analysis of the transient state of the induction motor. The magnetic equivalent circuit method is restricted to only one direction of magnetic flux. In this paper, the construction elements (that is, stator iron, rotor iron, yoke, air gap, etc.) of the squirrel cage induction motor were represented by a flux tube and the air gap magnetomotive force was calculated by the magnetic equivalent circuit method. Starting transient torque and phase current of the squirrel cage induction motor were verified by the theoretical calculation and the experiment.

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Coordinated Control of an Independent Multi-phase Permanent Magnet-type Transverse Flux Linear Machine Based on Magnetic Levitation

  • Hwang, Seon-Hwan;Kwon, Soon-Kurl;Hwang, Young-Gi;Bang, Deok-Je
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.95-102
    • /
    • 2014
  • This paper proposes a coordinated control for an independent multi-phase transverse flux linear synchronous motor (IM-TFLSM) based on magnetic levitation. The stator structures of the IM-TFLSM are composed of a two set, which has independent three-phase windings and a double-sided air-gap as opposed to the conventional Y-connected three-phase linear motors. A suitable control algorithm is necessary to operate the applied linear machine. This study proposes a coordinated control algorithm for adjusting the mover air-gap and thrust force of the IM-TFLSM in order to maintain air-gap and phase shifted current control of the independent 3-phase modules. In addition, the principle of operation and its special structures are described in detail and the validity and effectiveness of the control algorithm is verified through multiple experimental results.

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석 (Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels)

  • 홍성호;신종근;최영돈
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

Piezo-controlled Dielectric Phase Shifter

  • Jeong Moon-Gi;Kim Beom-Jin;Kazmirenko Victor;Poplavko Yuriy;Prokopenko Yuriy;Baik Sung-Gi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A sandwich structure of dielectric material and air gap inside a rectangular waveguide is proposed as a fast electrically tunable low-loss phase shifter. As the dielectric material is shifted up and down by piezoelectric actuator and, thereby, the thickness of air gap is changed, the effective dielectric constant of the sandwich structure is varied. Phase shifters based on the sandwich structure with different dielectric materials showed phase shift of $20{\sim}200^{\circ}/cm$ at X-band as the thickness of air gap varied up to $30{\mu}m$. The idea can be extended toward low-loss millimeter wave phase shifters since modem microwave ceramics have been developed to show very low dielectric loss$(tan\;{\delta}{\sim}10^{-4})$.

양측식 리니어 펄스 모터의 자로와 정특성 해석 (Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor)

  • 김성종;이은웅;김성헌;김준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권9호
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

전류신호 분석을 통한 저널베어링 이상상태 진단 (Diagnosis of a Journal Bearing Fault via Current Signature Analysis)

  • 박진석;허형;정경훈;이규만;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2005
  • A study on motor current signature analysis has been executed for monitoring the fault of journal bearing due to wear. The air gap eccentricity of motor produces specific frequencies in motor current, the supplied current frequency plus and minus rotational rotor frequency. The air gap eccentricity is simulated by the clearance of Journal bearing. The amplitudes of the specific frequencies increase with the increasing clearances. The amplitudes of the specific frequencies continue to increase over the wear limit that is used in the manufacturer of the test motor. Though clear relations between the amplitudes of the specific frequencies and the clearances are not obtained in this paper, the specific frequencies can be used as an indicator of a journal bearing fault. Further study is necessary to make out the quantitative relations between the specific frequencies and the clearances.

  • PDF