• Title/Summary/Keyword: Air fuel ratio

Search Result 804, Processing Time 0.025 seconds

Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula (한반도 권역별 대기 중 입자상 탄소 특성 연구)

  • Lee, Yeong-jae;Park, Mi-kyung;Jung, Sun-a;Kim, Sun-jung;Jo, Mi-ra;Song, In-ho;Lyu, Young-sook;Lim, Yong-jae;Kim, Jung-hoon;Jung, Hae-jin;Lee, Sang-uk;Choi, Won-Jun;Ahn, Joon-young;Lee, Min-hee;Kang, Hyun-jung;Park, Seung-myeong;Seo, Seok-jun;Jung, Dong-hee;Hyun, Joo-kyeong;Park, Jong-sung;Hwang, Tae-kyung;Hong, You-deog;Hong, Ji-hyung;Shin, Hye-jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.330-344
    • /
    • 2015
  • Semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon were made for the period of January to October 2014, at six national air monitoring stations in Korea. OC and EC concentrations showed a clear seasonal variation with the highest in winter (January) and the lowest in summer (August). In winter, the high carbonaceous concentrations were likely influenced by increased fuel combustion from residential heating. OC and EC concentrations varied by monitoring stations with 5.9 and $1.7{\mu}g/m^3$ in Joongbu area, 4.2 and $1.2{\mu}g/m^3$ in Honam area, 4.0 and $1.3{\mu}g/m^3$ in Yeongnam area, 3.7 and $1.6{\mu}g/m^3$ in Seoul Metropolitan area, 3.0 and $0.8{\mu}g/m^3$ in Jeju Island, 2.9 and $0.7{\mu}g/m^3$ in Baengnyeong Island respectively. The concentrations of OC and EC comprised 9.6~ 15.5% and 2.4~ 4.7% of $PM_{2.5}$. Urban Joongbu area located adjacent to the intersection of several main roads showed the highest carbon concentration among six national air monitoring station. On the other hand, background Baengnyeong Island showed the lowest carbon concentration and the highest OC/EC ratio (4.5). During the haze episode, OC and EC were enhanced with increase in $PM_{2.5}$ about 1.3~ 3 and 1.3~ 4.0 times respectively. The concentrations of OC, EC in the Asian dust case are about 1~ 2.4 times greater than in the nondust case. The origins of air mass pathways arriving at Seoul, using the backward trajectory analysis, can be mostly classified into 6 groups (Sector I Northern Korea including the sea of Okhotsk, Sector II Northern China including Mongolia, Sector III Southern China, Sector IV South Pacific area, Sector V Japan, Sector VI Southern Korea area). When an air mass originating from northern China and Mongolia, the OC concentrations were the most elevated, with a higher OC/EC ratio (2.4~ 3.3), and accounting for 17% of $PM_{2.5}$ mass on average.

Effect of Operating Condition of Airblast Atomizer on Twin spray characteristics and interaction (공기충돌형 연료분사장치의 운용조건이 이중분무특성과 간섭효과에 미치는 영향)

  • Park, S.G.;Han, J.S.;Kim, Y.;Park, J.B.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • The effect of operating condition was studied experimently on the characteristics of twin sprays ejected from two airblast atomizers, within the range of the mass air-fuel ratio 1.36∼3.54. Water and nitrogen gas were used as test fluids for the experiments. Spray characteristics of liquid spray were measured with measurement of mass distribution and instantaneous image of the spray cone. Experimental results show that the maximum specify of the distribution were lowered but distributed over the larger area when the ROA ratio increased, Center of mass position did not change with increasing water mass flow, Increase of the nozzle distance has an small effect on mass distribution of interaction area but distributed over the larger area. It was also conformed that the effect of interaction near central point of collision decreased with the increase of the ROA ratio on interaction area from comparison using superposition method

  • PDF

An Experimental Study of Acoustic Excitation Effect on Blowoff Mechanism for Premixed Flame (예혼합 화염 날림 메커니즘에 음향 가진이 미치는 영향에 대한 실험적 연구)

  • Shin, Jaeik;Jeong, Chanyeong;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1004-1012
    • /
    • 2014
  • In this study, blowoff was investigated in a ducted combustor with the bluff body when acoustic excitation was forced. To observe the flame structure, OH radical chemiluminescence was used and the image was analyzed by using POD (Proper Orthogonal Decomposition) algorithm. Natural gas mainly composed of methane was used as fuel. Blowoff occurred when the equivalence ratio was reduced. Equivalence ratio causing blowoff was measured by changing air flow rate, excitation frequency and sound pressure. Blowoff equivalence ratio was varied depending on the experimental conditions. Vortex frequency behind the bluff body and resonance effect in combustor are the main factors that affect the blowoff equivalence ratios with the excitation.

Combustion Analysis in a Pro-Combustion Chamber Diesel Engine by Approximate Heat Release Rate (근사적 열발생율에 의한 예연소실식 디젤기관의 연소해석)

  • 왕우경
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.30-38
    • /
    • 1993
  • In this study, the combustion characteristics in a pre-combustion chamber diesel engine was investigated with experimental conditions of marine engine load. The heat release analysis used was a single-zone single-chamber thermodynamic analysis based on pre-combustion chamber pressure-time data. Based on the results of this investigation, the following conclusions were reached: 1) Increasing the load, peak pressure was increased and position of P sub(max) was retarded in crank angle degrees. 2) Ignition delay time was almost constant without relating to the load and the heat values to form a combusitible mixture were decreased apparently with increasing the load. 3) In premixed-combustion mode, the pattern of heat release rate was resembled without relating to the load and premixed-combustion time was shortened with increasing the load. 4) Increasing the load, mass of premixed-burned fuel was increased slightly, but was invariable beyond a certain fuel-air ratio. 5) Increasing the load, premixed-burned fraction was decreased.

  • PDF

Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine (수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In order to meet the current emission regulations (EURO-6), it is necessary to significantly reduce $CH_4$ and $NO_X$ emissions. This study investigated the effect of a reduction in the valve overlap on the combustion and emission characteristics of a hydrogen-compressed natural gas engine under a part-load operating condition. The combustion and emission characteristics were analyzed for each fuel using the original camshaft and an altered camshaft with reduced valve overlap. The results showed that the thermal efficiency was decreased and the fuel flow was increased when using the altered camshaft. The $CO_2$ and $CH_4$ emissions were increased as a result of the reduced thermal efficiency. Under lean operating conditions, the $NO_X$ emission was decreased compared with one of the conventional camshaft. Thus, under the same fuels and operating conditions, it had a harmful influence on the emission characteristics and thermal efficiency.

Effects of CO Addition on Soot Formation in the Well Stirred Reactor (WSR에서 매연 생성에 관한 CO 첨가 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • Numerical investigation was performed to study on the soot formation characteristics in the WSR according to the CO addition. Ethylene and pure air were used as a fuel and an oxidizer, respectively, and three different equivalence ratios (2.0, 2.5, 3.0) were used in the calculation. The resulted CO mole fraction of 10 % CO addition showed the maximum value in spite of the least CO supply. This means that the conversion of CO to soot and other carbon compounds is weakened under incipient soot formation. The soot volume fraction was decreased with increasing the CO addition because the important species for soot formation such as pyrene and acetylene, were decreased with the addition of CO. When the equivalence ratio was 2.5, the soot volume fraction shows the highest value, which results from the contribution of fuel rich condition and reacting temperature. Furthermore, surface growth rate and species concentrations justified the HACA mechanism for soot formation.

Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine (RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구)

  • Park, J.S.;Ha, D.H.;Yeum, J.K.;Ha, J.Y.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

Basic Experiment of P8250 Educational Engine Performance (P8250 학습용 엔진성능의 기초 실험)

  • Lim, Chang-Su;Choi, Jun-Seop;Wang, So-Rang
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.218-231
    • /
    • 2008
  • The purpose of this study was made for the pre-teacher of university to enhance understanding for the concept of engine performance and to provide information regarding engine performance in the institute of teacher educator. This study was carried out through engine performance experiment with The Cussons Engine Test Bed P8250, internal combustion engine, in order to analyze data quantitatively, and apply and verify factors of controlling engine performance. The main results of this study are as follows: First, power and brake horsepower increased linearly, and torque over the mid-speed as engine rps(revolution per second) decreased. Second, the change of torque and specific fuel consumption were able to be verified and the concept of engine performance was able to be understood. Third, the experimental values of brake horsepower and torque on engine performance showed the same tendency as theoretical values. Fourth, air/fuel ratio increased proportionally as engine speed increased.

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.