• 제목/요약/키워드: Air fuel ratio

검색결과 804건 처리시간 0.021초

마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구 (Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor)

  • 최병일;한용식;김명배;황철홍;오창보
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1042-1047
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

PLIF를 이용한 ATR 연소기 내부의 연료분포 측정 (Fuel Distribution Measurements in ATR Combustor using PLIF)

  • 양인영;진유인;양수석;박승재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2004
  • ATR 엔진 연소기 내부에서의 연료와 공기의 혼합성능은 연소 안정성이나 효율에 지배적인 요인이 된다. 본 연구에서는 ATR 모델 연소기에서의 혼합성능을 비교하기 위하여 두 유체의 속도 비$(r=v_a/v_f)$를 변화시키면서 연료분포를 측정하였다. 측정 방법으로는 2차원 연료분포를 얻기 위하여 널리 이용되는 평면레이저 유도형광기법과 화상처리 기법을 사용하여 연료분포 이미지를 얻었다. 측정된 연료분포 화상으로부터 공기속도/연료속도 비가 1에 가까울수록 연료 혼합성능이 떨어지는 특성을 관찰하였다.

  • PDF

산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향 (Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics)

  • 박상규;양희천
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

Sensitivity of Hot Film Flow Meter in Four Stroke Gasoline Engine

  • Lee, Gangyoung;Lee, Cha--Myung;Park, Simsoo;Youngjin Cho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.286-293
    • /
    • 2004
  • The air fuel ratios of current gasoline engines are almost controlled by several air flow meters. When CVVT (Continuous Variable Valve Timing) is applied to a gasoline engine for higher engine performance, the MAP (Manifold Absolute Pressure) sensor is difficult to follow the instantaneous air fuel ratio due to the valve timing effect. Therefore, a HFM (Hot Film Flow Meter) is widely used for measuring intake air flow in this case. However, the HFMs are incapable of indicating to reverse flow, the oscillation of intake air flow has an negative effect on the precision of the HFM. Consequently, the various duct configurations in front of the air flow sensor affect the precision of HFM sensitivity. This paper mainly focused on the analysis of the reverse flow, flow fluctuation in throttle upstream and the geometry of intake system which influence the HFM measurement.

액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구 (A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine)

  • 김창업;최교남;강건용;박철웅
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

기화혼합장치를 사용한 스파크 점화기관의 기관성능 및 배기성능에 관한 연구 (A Study on the Power Output and Exhaust Emission using the Fuel Vaporizing Device in Spark-Ignition Engine)

  • 이성열
    • 오토저널
    • /
    • 제9권6호
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of the three types of fuel vaporizing device on the engine torque and exhaust emission was investigated. Among the three types of fuel vaporizing device designed for the experiments, a 88mm long device with mesh around the inside pipe showed stable lean mixture combustion up to 21:1 air-fuel ratio and reduced the exhaustion of CO and HC. Compared with the general trend in the decrease of engine torque it was observed that the decrease of engine torque in this lean mixture combustion with the new device was small.

  • PDF

재연소 과정을 적용한 연소로에서 공기 다단 연소기의 NOx 발생 및 열전달에 대한 효과 (Effect of a Multi Air-staged Burner on NOx Formation and Heat Transfer in Furnace Adopted the Reburning Process)

  • 김혁수;백승욱;이창엽
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.842-849
    • /
    • 2006
  • An experimental study has been conducted to investigate the effects of a multi air-staged burner on NOx formation and heat transfer in a 15kW large-scale laboratory furnace adopted the reburning process. The reburn fuel as well as burnout air was injected from each nozzle attached at the wall of the cylindrical furnace. Fuel in both main burner and reburn nozzle was LPG (Liquefied Petroleum Gas). The paper reports the influences on NOx reduction of reburn fuel fraction in reburning zone. Temperature distribution inside the overall region as well as total heat flux at the wall of the furnace has been measured to examine the heat transfer characteristics due to the reburning process. For comparison, the reburning effects were examined for a combustor with two types of burner; a regular single staged burner and a multi-air staged burner. A gas analysis was also performed to evaluate an appropriate condition for NOx emission in a primary zone for the excess air ratio of 1.1. As a result, combustion efficiency expected to become more efficient due to the reduction of heat loss in burnout zone decrease when multi air-staged burner in furnace adopted reburning technology was used.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

압축비 변경에 따른 CNG기관의 특성 연구 (Performance Characteristics of CNG Engine at Various Compression Ratios)

  • 김진영;하종률
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.145-151
    • /
    • 2005
  • Natural gas is one of clean fuels that can replace petroleum-based fuels, because it has low exhaust emission, comparatively high thermal efficiency and abundant deposits. In this addition, owing to high octane number and wide lean flammability limit, it has a strong point to increase the compression ratio. For this reason, the research is being actively executed to increase the generating power and thermal efficiency of the engine by raising the compression ratio through utilization of high octane number relevant to development of CNG engine. In this study, 0.63L single cylinder diesel engine has been used to alter easily compression ratio. Compression ratio has gotten under control by modifying the thickness of gasket between cylinder head and block without major structural modifications. As the result, as compression ratio has increased, generating power and fuel consumption ratio have been improved. As for emission concentration, as compression ratio has increased, THC concentration has been decreased while exhause concentration of NOx increased. In case compression ratio has excessively increased, brake output decrease and cycle variation have been increased. As the result acquired by analyzing brake output, fuel consumption ratio, cycle variation and exhaust, the engine driving condition has acquired $\varepsilon=13$ as the optimal compression ratio in this study.