• 제목/요약/키워드: Air flow restriction

검색결과 14건 처리시간 0.023초

자동차 흡기 에어필터의 여재 및 성능에 관한 연구 (A Study on the Filter Media and Performance of Intake Air Filter for Vehicular Engine)

  • 안병찬;오명도
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.8-15
    • /
    • 2004
  • Since the vehicle is regarded as the third living space, the comfortable conditions are required in the passenger compartment. For this reason, customers are concerned about the filtering performances and the importance of filter media has been greatly placed. Therefore the dust holding capacity, the efficiency of these filter media (dry paper, wet paper, non-woven) and the configuration of air filter for vehicle were measured in this study. The following results were obtained on the basis of air filter test. It shows that the thickness and poresize of filter media should be lower for the higher efficiency. The measurement result shows that the performance of round shape filters are higher than the square shape filters. The dust holding capacity of the wet paper and the non-woven paper is higher than the dry paper. As a result, this research can provide an important design parameter and product guidance of the intake air filter for vehicular engine.

소형축류형 터빈에서의 부분분사 유동특성에 관한 연구 (An Experimental Study of Partial Admitted Flow Characteristics on a Small Axial-Type Turbine)

  • 조종현;조수용;최상규
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.28-37
    • /
    • 2004
  • An experimental study is conducted to investigate flow characteristics on a small axial-type turbine which is applied as the rotating part of air tools. It operates in a partial admission due to consumption restriction of the high pressure air. In this operating condition, it is necessary to understand flow characteristics for obtaining the high specific output power. Tested turbine consists of two stages and the mean radius of flow passage is less than 10mm. A 6 bar pressure air is used to operate the turbine. The experimental results show that flow angles depend on the measuring location along the circumferential direction, but its discrepancy is alleviated along the axial direction. Absolute flow velocities show three times difference according to the measuring location at the exit of the first rotor due to the partial admission, but they show similar value at the exit of the second rotor by the velocity diffusion. From the measured flow angles and velocities, a ratio of output power obtained by the first and second rotor is estimated. It shows that the output power obtained by the second rotor is about $11\%$ to that by the first rotor at 60,000 RPM. It is effective therefore to improve the first rotor for increasing the turbine output power.

헤더-채널 분기관에서의 헤더 입구 형상이 2상 유동 분배에 미치는 영향에 대한 실험적 연구 (Effect of Inlet Geometries on the Two-Phase Flow Distribution at Header-Channel Junction)

  • 이준경
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.324-330
    • /
    • 2013
  • The main objective of this work is to experimentally investigate the effect of inlet geometries on the distribution of two-phase annular flow at header-channel junctions simulating the corresponding parts of compact heat exchangers. The cross-section of the header and the channels were fixed to $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Experiments were performed for the mass flux and the mass quality ranges of $30{\sim}140kg/m^2s$ and 0.3~0.7, respectively. Air and water were used as the test fluids. Three different inlet geometries of the header were tested:no restriction (case A), a single 8 mm hole at the center (case B), and nine 2 mm holes around the center (case C) at the inlet, respectively. The tendencies of the two-phase flow distribution were different, in each case. For cases B and C (flow resistance exists), more uniform flow distribution results were seen, compared with case A(no flow resistance), due to the flow pattern change to mist flow from annular flow at the inlet, and the flow recirculation near the end plate of the header.

터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析) (Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow)

  • 조강래;오종식
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

압축냉각공기를 이용한 선삭가공시 냉각효과 해석 (Analysis of Cooling Effect Using Compressed Cold Air in Turing Process)

  • 곽승용;김동길;이종항;이상조
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

제한공간에 설치된 제트팬의 기류특성 예측 (Prediction of the Flow Characteristics of Jet Fan in a Confined Space)

  • 이재헌;환유준;김경환;임윤철;오명도;김종필
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.206-213
    • /
    • 2002
  • In this paper, the flow characteristics of an axial fan spraying isothermal compact jet in a confined space were investigated by the experimental methods, the numerical method, and the free jet theory According to the results, the numerical result and the experimental result are agreed well qualitatively and different quantitatively within $\pm1.0%$ for the centerline velocity, the entrainment ratio, and the maximum throw. However, the free jet theory can reasonably predict the centerline velocity except the entrainment ratio and the maximum throw. In other words, the entrainment ratio and the maximum throw by 1.he free jet theory are hard to estimate the characteristics of jet because of restriction of c confined space.

500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구 (A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor)

  • 성홍석;이충호;서정세
    • 설비공학논문집
    • /
    • 제28권8호
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구 (Development of ESS Based on VRFB-LFPB Hybrid Batteries)

  • 천영식;박진수;유진호;이진
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성 (Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers)

  • 박윤철;김상혁;김지영
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구 (Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet)

  • 황태진;이인철;구자예
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.