• Title/Summary/Keyword: Air flow characteristics

Search Result 2,469, Processing Time 0.032 seconds

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

A Study on the Characteristics Using Pig Manure Under Aerobic Air Flow Rate During Composting (돈분이용 퇴비화과정에서의 공기공급량별 퇴비화 특성변화에 관한 연구)

  • Kwag, J.H.;Kim, J.H.;Jeong, K.H.;Cho, S.H.;Ahn, H.K.;Choi, D.Y.;Jeong, M.S.;Lee, S.C.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • This study was carried out to investigate on the composting characteristics variation accoding to air supply capacity in Pig manure. The composting of pig manure is economical and efficiently process. The fermented compost was added in pig manure mixed with sawdust was composting reators. Air supply capacity levels of fermented compost on the pig manure mixed with sawdust were regulated at 50, 100, 150 and 200$\ell/m^3$/min. respectively. The obtained results can be followed as bellow; The temperature variations of experimental composting piles during composting for the different of T-1 reach $40^{\circ}C$ in 2 days, T-2, T-3 and T-4 reach $60^{\circ}C$ in 2 days and T-3, T-4 maintained until 8 days. The decreases in water contents per each square meter for the different of T-1 (50 l/$m^3$/min), T-2(100 l/$m^3$/min), T-3(150 l/$m^3$/min) and T-4(200 l/$m^3$/min.), The decreases ratio in water contents was T-1, T-2, T-3 and T-4 were 15.4%, 28.8%, 33.4% and 35.2%. The decreases ratio in weight was T-1, T-2, T-3 and T-4 were 7.6%, 15.6%, 16.8% and 16.9% respectively. The variations of oxygen concentration from composting period in case of oxygen discharge concentration T-1, T-2, T-3 and T-4 were 9 ppm. respectively. Fertilizer components after composting were examined. Nitrogen contents of the T-1, T-2, T-3 and T-4 were 0.45%, 0.44%, 0.42% and 0.44%, and P2O5 contents were T-1, T-2, T-3 and T-4 were 0.37%, 0.41%, 0.42% and 0.44% respectively. Therefore, the compost curing air supply of air volumes at least 150$\ell$/min/min. or more to supply the aerobic composting pig manure normally are judged to be possible.

Dispersion of Particle Pulse in Human Lung Airway (인체기관지내의 입자펄스 확산 실험)

  • 이진원;이동엽;추경호
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.511-518
    • /
    • 1998
  • In order to develop the aerosol bolus technique which is thought to be a potential tool for probing geometries or abnormalities of small airways, an experimental system of measuring fast time variations of particle concentration in the inhaled and exhaled breathing air was developed. The system generates monodisperse sebacic acrid particles of 1 micron size and 1.2 of geometric standard deviation in high concentration of $10^8$ particles/cc, delivers a short pulse of particles at the controlled instant during inhalation using a solenoid valve, and measures the fast change of particle concentration in using the laser light scattering. Successful operation of the generator and the measuring system was confirmed by smooth concentration profiles in inhalation. It was also confirmed that maintaining a constant breathing rate is essential to stable outputs and any disturbance in flow rate near the mode (maximum concentration) induces a large number of spurious peaks in the exhalation. Experimental data without strict control of breathing flow rate showed a substantial amount of scatter. The measured results showed an improvement in scatter over the existing results. When compared with theoretical predictions from 1-D convective diffusion equation and other experiments, general characteristics of dispersion for several penetration depths showed a good agreement, but there exists some difference in absolute values, which is attributed to the difference in body conditions. Improvements are needed in the theory, especially in relation to correcting for the effect of breathing flow rate.

  • PDF

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

Flow Analysis indoor Coal Storage Shed due to Wind Velocity and Wind Direction of Ambient Air (외기의 풍속 및 풍향에 따른 옥내저탄장 내부 유동 해석)

  • Kim, Tae-Kwon;Cho, Mok-Lyang;Bae, Young-Wan;Kim, Ji-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.538-545
    • /
    • 2020
  • The outdoor coal storage sheds of thermal power plants are being converted to indoor coal storage sheds worldwide because of the environmental pollution problems in the surrounding areas. On the other hand, indoor coal storage sheds are causing problems, such as indoor coal scattering and harmful gas generation. In this study, the ventilation method of indoor coal storage sheds was analyzed in terms of the internal flow characteristics and ventilation according to the outside wind velocity and direction. CFD analysis was performed based on the actual flow measurement information inside the indoor coal storage sheds. A comparison of the wind speed of 6 m/s and 2 m/s when the outside wind direction was easterly showed that the stream velocity to the monitor louver was faster and the recirculation area was clearer at 6 m/s than at 2 m/s. In addition, the trend of a westerly wind was similar to that of the easterly wind. The ventilation rate according to the wind speed was 13.1 times and 4.4 times for a wind speed of 6 m/s and 2 m/s, respectively. If the wind speed is 2 m/s, the situation does not meet the required number of ventilations per hour in a general plant, and needs to be improved.

The Development of a Cryotherapy System (한냉물리치료기의 개발)

  • Kim, Yeong-Ho;Yang, Gil-Tae;Jang, Yun-Hui;Park, Si-Bok;Ryu, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.617-622
    • /
    • 1998
  • A cryotherapy system using cold air was developed. The developed system had superior low-temperature characteristics with various flow rates and nozzle sizes, and used R-404A, as a coolant, which has no destructive effects of Ozone layers. Flow rates and the treatment time can be easily altered during the operation. In addition, and alarm system was designed for the overload, overheat, and over-charge of the machine. For clinical applications, skin temperatures, intra-articular temperatures of the knee joint and intra-muscluar temperatures of the gluteal muscles were measured during and after the cryotherapy. After a 5-minute therapy, skin and intra-articular temperatures decreased by $23.3{\pm}4.7 and 4.1 {\pm}1.0^{circ}C$, respectively. A 5-minute cryotherapy was good enough to maintain low intra-articular temperatures for 2-3 hours. Resting intra-muscular temperatures in 2, 4, and 6cm deep in the gluteal muscle were $36.5{\pm}1.2, 36.9{\pm}0.2, 37.1{\pm}0.2^{circ}C$, respectively (p<0.05). Lowest temperatures in 2, 4, and 6cm depth were $35.1{\pm}0.7, 36.2{\pm}0.4, 36.9{\pm}0.3^{circ}C$, respectively (p<0.05). Temperatures after a 2-hour cold air application on the skin and in the muscle in dept도 of 2, 4, and 6cm were $32.2{\pm}1.1, 36.2{\pm}0.5, 36.6{\pm}0.3, 36.9{\pm}0.3^{circ}C$respectively (p<0.05). Temperatures on the skin and in the muscle significantly decreased after 2 hours, compared with before cold air application (p<0.05). The intra-muscular temperature was changed more slowly than the skin temperature, and the deeper the muscle, the lesser temperature changes. The effect of a 5-minute cold air application lasts up to 2 hours, and it seems that the rebound-rise of the temperature dut to the reactive vasodilatation does not occur in the gluteal muscle.

  • PDF

Characteristics of Particulate Matter 2.5 by Type of Space of Urban Park - Focusing on the Songsanghyeon Plaza in Busan - (도로변 공원의 공간조성유형에 따른 초미세먼지 분포 특성 - 부산시 송상현광장을 사례로-)

  • Ahn, Rosa;Hong, Sukhwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.37-48
    • /
    • 2021
  • Roadside pollution has been identified as the main cause of PM2.5 in urban areas. Green infrastructure has been understood to mitigate air pollution from roadside traffic effectively, but complication depend on environmental variables. This study aimed to investigate the characteristic of PM2.5 by the type of space in an urban park located in Songsanghyeon Plaza, surrounded by a 12-lane road on all sides. Type of space was typically classified as roadside square (A), sunken square (B), a mix of trees and hedges/shrubs (C), trees only (D), and grass square (E) according to the land-use type and layers of trees. PM2.5 was measured for nine days, three days for three different Air Quality Forecasts-Good level (0~15㎍/m3), Moderate level (16~35㎍/m3), and Unhealthy level (36~75㎍/m3). The analysis result was as follows. At good levels, there was statistical significance in the order of D, E < B, C < A. In the case of moderate levels and unhealthy levels, D and E were statistically lower than other land-use types. The characteristic of PM2.5 in the urban park by type of space was affected by atmospheric flow into the road. The relatively high concentration of A and C was located near the roads. Although B was far away from the road, the reason for the high concentration of PM2.5 was that no structures blocked the air pollution. Thanks to the type of space C, filtering the air pollution from the roads, the concentration of PM2.5 in D and E was relatively low.

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).