• Title/Summary/Keyword: Air flow characteristics

Search Result 2,469, Processing Time 0.032 seconds

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates (고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성)

  • Lee, Jae-In;Woo, Sang-Hee;Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

Change of Chemical and Microbial Properties during Fermentation of Cotton Waste for Oyster Mushroom Cultivation (느타리 재배용 폐면 발효 중의 화학성 및 미생물 상의 변화)

  • Jhune, Chang-Sung;Jang, Kap-Yeul;Cho, Soo-Muk;Oh, Se-Jong;Park, Jung-Sik;Weon, Hang-Yeon
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The changes of microflora and chemical characteristics during fermentation process of cotton waste for oyster mushroom cultivation were investigated with 5 l bench-scale reactors placed in an incubator at different temperatures ($40,\;50\;and\;60^{\circ}C$). Cotton waste was wetted to 70% moisture, and air flow rates to the substrate were 50, 100 and 300 cc/min. In processing of composting, the mesophilic bacterial population decreased sharply but thermophilic bacterial population increased. In case of fungi, both mesophilic and thermophilic population decreased. The daily $CO_2$ evolution showed little difference in all treatments, while $NH_3$ dropped sharply after 3 days. The desirable composting temperature and air flow based on the mycelial growth of oyster mushroom were $50^{\circ}C$ and 100 cc/min, respectively.

Development of Microbubble Flotation Technique for the Production of High Grade Coal (Microbubble Flotation에 의한 고품위(高品位) 석탄생산(石炭生産) 기술(技術) 개발(開發))

  • Han, Oh-Hyung;Park, Sin-Woong;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.44-52
    • /
    • 2012
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from fixed carbon 20.68% coal. Also, the mineralogical, physical/chemical and liberation characteristics was found with the aim of decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and microbubble column flotation that was appropriate for the processing of fine particles was used with the variation in kinds and quantity of frother, collector and depressant. Also grinding time, air flow rate and feeding rates were examined. As a result of batch flotation, using pulp density 20%, collector DMU-101+dodecyl amine(100 mL/ton), frother pine oil (200 mL/ton), depressant sodium silicate(1 kg/ton), obtained the result of ash rejection 81.55% and combustible recovery 70.23%. In result of microbubble column flotation, the result was ash rejection 83.85% and combustible recovery 70.42% under the condition of pulp density 5%, grinding time 5 min. collector DMU-101+DDA(100 mL/ton), frother AF65(5.4 L/ton), depressant SMP(3.5 kg/ton), wash water(360 mL/min.) and air flow rate(1,197 mL/min.).

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell (이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구)

  • Bae, Ho-June;Ahn, Kook-Young;Lee, Young-Duk;Kang, Sang-Kyu;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

A Study on the Diffuser Design of Exhaust Pipes for the Infra-Red Signature Reduction of Naval Ship (함정 적외선 신호 감소를 위한 폐기관의 디퓨져 설계에 관한 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.793-798
    • /
    • 2017
  • In modern naval ships, an infrared signature suppression (IRSS) system is used to reduce the metal surface temperature of the heated exhaust pipe and high-temperature exhaust gases generated from the propulsion system. Generally, the IRSS systems used in Korean naval ships consist of an eductor, mixing tube, and diffuser. The diffuser reduces the temperature of the metal surface by creating an air film due to a pressure difference between the internal gas and the external air. In this study, design variables were selected by analyzing the shapes of a diffuser designed by an advanced overseas engineering company. The characteristics of the design variables that affect the performance of the IRSS were investigated through the Taguchi experimental method. A heat flow analysis technique for IRSS systems established in previous studies was used analyze the performance of the diffuser. The performance evaluation was based on the area-averaged value of the metal surface temperature and exhaust gas temperature at the outlet of the diffuser, which are directly related to the intensity of the infrared signature. The results show that the temperature of the exhaust gas was significantly affected by changes in the diameter of the diffuser outlet, and the temperature of the diffuser's metal surface was significantly affected by changes in the number of diffuser rings.

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.

Flotation for Improving Grade of Domestic Fine Coal (국내산(國內産) 미립(微粒) 석탄(石炭)의 품위향상(品位向上)을 위한 부유선별(浮遊選別) 연구(硏究))

  • Han, Oh-Hyung;Kim, Min-Gyu;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.64-72
    • /
    • 2013
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from 57.39% of fixed carbon fine coal. Also, the mineralogical, physical/chemical and liberation characteristics are to be identified to decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and CPT column flotation proper for the processing of fine particles were used with the variation in kinds and quantity of frother, collector and depressant. Also air flow rate and feeding rates were examined. As a result of batch flotation using 20% of pulp density DMU 101 collector(100 mL/ton), AF65 frother(300 mL/ton), sodium metaphosphate depressant (1 kg/ton), 67.57% of ash rejection and 70.90% of combustible recovery were obtained. The result of CPT column flotation was 85.59% of ash rejection and 88.97% of combustible recovery under the conditions of 5% of pulp density, DMU-101 collector (100 mL/ton), AF65 frother(10 L/ton), SMP depressant(1 kg/ton), wash water(100 mL/min.) and air flow rate(1,200 mL/min.).

Diversity and Characteristics of the Meat Microbiological Community on Dry Aged Beef

  • Ryu, Sangdon;Park, Mi Ri;Maburutse, Brighton E.;Lee, Woong Ji;Park, Dong-Jun;Cho, Soohyun;Hwang, Inho;Oh, Sangnam;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.105-108
    • /
    • 2018
  • Beef was dry aged for 40-60 days under controlled environmental conditions in a refrigerated room with a relative humidity of 75%-80% and air-flow. To date, there is little information on the microbial diversity and characteristics of dry aged beef. In this study, we explored the effect of change in meat microorganisms on dry aged beef. Initially, the total bacteria and LAB were significantly increased for 50 days during all dry aging periods. There was an absence of representative foodborne pathogens as well as coliforms. Interestingly, fungi including yeast and mold that possess specific features were observed during the dry aging period. The 5.8S rRNA sequencing results showed that potentially harmful yeasts/molds (Candida sp., Cladosporium sp., Rhodotorula sp.) were present at the initial point of dry aging and they disappeared with increasing dry aging time. Interestingly, Penicillium camemberti and Debaryomyces hansenii used for cheese manufacturing were observed with an increase in the dry aging period. Taken together, our results showed that the change in microorganisms exerts an influence on the quality and safety of dry aged beef, and our study identified that fungi may play an important role in the palatability and flavor development of dry aged beef.