• 제목/요약/키워드: Air cooled condenser

검색결과 53건 처리시간 0.029초

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석 (Performance Analysis of Microturbine CHP System with Absorption Chiller)

  • 윤린;한승동
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.486-491
    • /
    • 2008
  • The performance of a microturbine CHP system equipped with an absorption chiller was analyzed by modeling it. The microturbine with recuperator was simulated with the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microturbine were simulated. These results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type with a solution heat exchanger. The heat input into the generator was proportional to the heat transfer rate and the UA values of the heat exchangers of the absorption chiller. Furthermore, the COP of the absorption chiller increased with respect to an increase of the heat input into the generator, under the sufficient evaporator capacity condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller doubled, and the UA values for evaporator and condenser increased by factors of x3.9 and x3.4, respectively, under the same COP condition.

공랭식 복수기 설계를 위한 열 전달계수 및 압력손실 측정과 상관 식 결정 (Determination of Heat-Transfer Coefficients and Pressure tosses and their Correlation for Design of a Air-Cooled Condenser)

  • 김성원;권세준;이지은;이상호;이정훈;이재두
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.75-78
    • /
    • 2003
  • These experiments is to determine design equations for heat transfer and for pressure drop in a new designed heat exchanger with the waved circular fin tube bundles under various experimental conditions. The results with waved circular fin tube bundles are compared with those with the flat circular fin tube bundles. Heat transfer coefficients in the waved circular fin tubes were enhanced to about 50% in comparison with those in the flat circular fin tubes, This is expected to reduce the capacity of a heat exchanger up to 30%.

  • PDF

수평 평활관내 R245fa의 흐름 응축 열전달 특성 (Flow Condensation Heat Transfer Characteristic of R245fa in a Horizontal Plain Tube)

  • 박현신;박기정;정동수
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.87-96
    • /
    • 2008
  • Flow condensation heat transfer coefficients(HTCs) of R123 and R245fa are measured in a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed saturation temperature of $50\;{\pm}\;0.2\;^{\circ}C$ with mass fluxes of 50, 100, $150\;kg/m^2s$ and heat flux of $7.3{\sim}7.7\;kW/m^2$. Heat transfer data are obtained in the vapor quality range of $10{\sim}90%$. Test results show that the flow condensation HTCs of R245fa are overall 7.9% higher than those of R123 at all mass fluxes. The pressure drop of R245fa is smaller than that of R123 at the same heat flux. In conclusion, R245fa is a good candidate to replace ozone depleting R123 currently used in chillers from the view point heat transfer and environmental properties.

흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석 (Performance Analysis of Micro-turbine CHP System with Absorption Chiller)

  • 윤린;한승동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.540-545
    • /
    • 2007
  • The performance of microturbine CHP system equipped with an absorption chiller was analyzed by modelling of a microturbine and an absorption chiller. The microturbine having recuperator was simulated by the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microtubune were simulated, and this results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type having solution heat exchanger. When heat input to the generator increased, the heat transfer rate and UA of the heat exchangers of the absorption chiller proportionally increased. Besides, the COP of the absorption chiller increased with increase of the heat input to the generator under the sufficient size of the evaporator condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller increased by two times, and UA values for evaporator and condenser were increased by 3.9 and 3.4 times, respectively, under the same COP condition.

  • PDF

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

응축성장을 이용한 PM2.5 초미세먼지의 무필터 제거 (Filterless Removal of PM2.5 Dusts by Condensational Growth)

  • 표주원;이동근
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.221-228
    • /
    • 2017
  • 본 연구에서는 부엌이나 밀폐 작업장과 같이 PM2.5 초미세먼지가 고농도로 발생하는 장소에 적용 가능한 무필터 초미세먼지 정화기술을 제안하고자 한다. 이런 장소에서는 기존 필터기반의 공기정화기는 높은 필터교체비용으로 인해 적용이 불가능하여 작업자가 고농도 PM2.5 초미세먼지에 직접 노출되는 심각한 문제가 있다. 입자가 수 마이크론의 크기로 성장하면 증가한 관성으로 쉽게 제거가능하기 때문에 본 연구에서는 초미세먼지의 응축성장에 집중하였다. 물분무를 이용하는 공기포화기, 수증기를 응축시켜 입자를 성장시키는 응축기, 멀티임팩터 제거기로 구성된 시제품을 개발하였고 낮은 유량의 랩스케일 실험에서 실제 공기청정기 유량 조건에서 그 성능을 검증하였다.

100마력 고온초전도 동기전동기 개발 (Development of a 100 hp HTS Synchronous Motor)

  • 손명환;백승규;이언용;권영길;조영식;김종무;문태선;김영춘;권운식;박희주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구 (Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted)

  • 이진국;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구 (A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater)

  • 이진국;최광환
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.