• 제목/요약/키워드: Air control

검색결과 5,825건 처리시간 0.051초

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

공기스프링 방진대의 능동제어 (Active Control of Air-Spring Vibration Isolator)

  • 송진호;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

Air dome inner pressure control system

  • Miki, Norihisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.727-730
    • /
    • 1989
  • Tokyo dome is Japan's first air dome. The roof of the dome is supported by air pressure. The centralized control system (YOKOGAWA's DCS : CENTUM and YEWPACK) is applied to automatically regurate the air pressure. The control system acquires signals from sensors positioned throughout the stadium and operate 36 fans to blow air into the dome. Great emphasis is placed on the reliability and safety of the system.

  • PDF

FUZZY PID 방법을 이용한 개별 공조시스템의 급기온도 제어 (A FUZZY PID Control of Supply Duct Outlet Air Temperature for PEM)

  • 장영준;박영철;정광섭;한화택;이정재
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.278-284
    • /
    • 2002
  • The work presented here provides a control of the supply duct outlet air temperature in PEM (personal environment module) using fuzzy PID controller. In previous work, PID control systems were used, but the result shows that the outlet air temperature and electric heater regulating voltage were oscillated. Fuzzy PID control systems are designed to improve the system response obtained using PID control and implemented experimentally Also, PID controller and fuzzy controller without PID logic are provided to compare the result with that of the fuzzy PID controller. Data obtained shows that the fuzzy PID control system satisfies the design criteria and works proper1y in controlling the supply air temperature. Also it has bettor performance than the previous result obtained using PID control.

외기냉방 시스템의 제어방법이 에너지 소비량에 미치는 영향에 관한 연구 (Effects of Control Methods of Outdoor Air Cooling System on Energy Consumption in Building)

  • 황진원;안병천
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4253-4259
    • /
    • 2015
  • 본 연구에서는 자연외기를 활용하여 건물의 에너지절약을 위한 외기냉방제어 시스템에 대하여 다양한 제어방법에 따른 제어특성 및 에너지 소비량에 미치는 영향에 관해 시뮬레이션 연구를 수행하였다. 연구 방법으로는 TRNSYS 프로그램을 활용하여 시스템 해석 모델링을 수행하였으며, 외기 냉방을 하지 않은 경우와 기존의 외기냉방 제어방법들을 적용하였을 경우에 대해 제어성능에 대한 비교 분석이 이루어졌다. 연구 결과로 외기온도 변화에 따라 적절한 외기도입 온도조건을 선정하는 것이 에너지 절감에 효과적이며, 외기와 환기온도를 비교하여 온도제어하는 방법이 에너지 절감효과가 가장 크게 나타남을 알 수 있었다.

슬라이딩 섭동 관측기를 이용한 에어셀과 반능동 서스펜션의 통합 제어 (Integration Control of Air-Cell Seat and Semi-active Suspension Using Sliding Perturbation Observer Design)

  • 유기성;윤정주;이민철;유완석
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.159-169
    • /
    • 2004
  • In this study, integration control of air-cell seat and semi-active suspension is proposed to minimize the road-tyre force which can cause uncomfortable feeling to rider. The proposed integration control with sliding perturbation observer is consisted of air-cell seat control which uses the force generated by air-cell and the sky-hook control. The air-cell seat itself has been modeled as a 1 degree of freedom spring-damper system. The actual characteristics of the air-cell have been analyzed through experiments. In this paper, we introduces a new robust motion control algorithm using partial state feedback for a nonlinear system with modelling uncertainties and external disturbances. The major contribution of this work is the development and design of robust observer for the state and the perturbation. The combination skyhook controller and air-cell controller using the observer improves control performance, because of the robust routine called Sliding Observer Design for Integration Control of Air-Cell Seat and Semi-active Suspension. The simulation results show a high accuracy and a good performance.

바닥복사냉방의 결로방지를 위한 제습제어에 관한 연구 (A Study on the Dehumidification Control to Prevent Condensation for Radiant Floor Cooling)

  • 김용이;김광우
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.137-143
    • /
    • 2003
  • In the forming of an integrated system of radiant floor cooling and dehumidifying, chilled coil can be used for cooling and dehumidification. Therefore, it is necessary to find the efficient control method which can eliminates latent load efficiently. This study has been conducted to find this method by dividing the dehumidification system into 3 types according to the control variables and analyzing characteristics of each system. To prevent the floor surface condensation, the amount of condensation can be manipulated by water temperatures, water flow rates in chilled coil, and air flow rates passing by it. So dehumidification system control can be divided into constant air flow control and variable air flow control. Regarding dehumidification control, variable air flow control, which eliminates latent load rather than sensible load, is preferable to constant flow control.

Implementation of Fuzzy Logic Control for Air Conditioning Systems

  • Mongkolwongrojn, M.;Sarawit, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1264-1267
    • /
    • 2005
  • Fuzzy logic control has been widely applied for handling the system which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters, several fuzzy logic controllers have been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control both in door temperature and humidity in the air conditioning systems. The manipulating variables are speed of compressor, heater and supply air flow rate. The microcomputer was used to interface with in system. The experimental results show the superior of multivaiable fuzzy logic control to keep room temperature and humidity in air conditioning system for the best comfortable.

  • PDF

냉난방 시스템의 이중선형 시스템에 관한 제어기 설계 (A Controller Design of the Bilinear System for HVAC(Heating, Ventilating and Air-conditioning) System)

  • 이정석;강민수;김명호;이기서
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, a HVAC controller which has a bilinear system is designed to control the air temperature in building room and a saving of energy on the HVAC system. For modeling of the HVAC bilinear system, AHU(Air Handling Unit) is modeled on the control of inside-outside air flow using three dampers in a duct. A heat exchanger and the single room are also modeled by the energy conservation law. Under the modeling of the HVAC bilinear system, the control's law of the bilinear HVAC system is derived by Lyapunov's non-linear theory and Deress's the linear feedback laws for bilinear system. In this paper it was proved that the controller of the HVAC bilinear system is able to control the air temperature with a disturbance in order to get a target of temperature in the building room by the computer simulation when the control inputs regulate the air flow rate and a capacity of the heat exchanger.

  • PDF

곡물빈용 공기조화장치의 퍼지제어기 개발 (Development of Fuzzy Controller for Air Conditioning of Grain Bin)

  • 최영수;문대식;정종훈
    • 한국식품저장유통학회지
    • /
    • 제9권2호
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.