• Title/Summary/Keyword: Air bubble method

Search Result 88, Processing Time 0.026 seconds

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF

Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet (초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가)

  • Kim, Hyun-Jin;Park, Il-gun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 107 particles mL-1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL-1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

An educational effect analysis of a short-term TRIZ program in industry-university cooperation (산학연계 트리즈(TRIZ) 단기 프로그램의 교육적 효과 분석)

  • Han, Jiyoung;Kim, Sung-Hui
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • A camp program where the theory of inventive problem solving TRIZ is applied to real problems of the industry was developed and taught at a five-day seminar apart from the standard curriculum at a university D in Gyeonggido. This study focuses on the educational effect that the TRIZ method has on the engineering students when their creative problem solving skills are required to solve industry problems on their own with the knowledge from their courses. For five days, the students were educated about TRIZ and assigned a real industry problem "Removal of friction caused by bubble formation in water heating pipelines". By applying TRIZ to the problem, the students developed an "Air removing Air Arrester" which received the evaluation, "with understanding the system architecture and the task objective causes and formation of the problem could be handled which directly helps the company's R&D". In this case, TRIZ offers the students a guideline and knowledge on how to approach problems and as a result the students provided a practical solution. During the process, the TRIZ method instilled confidence in the students and proved to be a motivation. It becomes obvious that this short-term program has a positive effect on students' way of thinking creatively and increasing their problem-solving abilities.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Development of Uniform Press for Wafer Bonder (웨이퍼 본딩 장비용 Uniform Press 개발)

  • Lee, Chang-Woo;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Seung-Man;Kim, Yong-Jin;Kim, Dong-Hoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.265-271
    • /
    • 2015
  • The bonding process should be achieved in vacuum environment to avoid air bubble. In this study, we studied about pressure uniformity that became an issue in thermo compression bonding usually. Uniform press is realized by the method that use air spring and metal form spring. The concept of uniform press using air spring is removed except pressing direction in the press processing so angle between the vector of pressure surface and the pressure axis is parallel automatically. Air spring compensate the errors of machining and assembly. Metal form compensate the thermal deformation and flatness error.

Spray characteristics of effervescent atomizer with internal flows (Effervescent atomizer의 내부 유동에 따른 분무특성)

  • Ku, K.W.;Hong, J.G.;Kim, J.H.;Lee, C.W.;Park, C.D.;Lim, B.J.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

Numerical Study on the Ocean Sequestration of Liquid $CO_2$ (액체 이산화탄소 해양 고정화에 대한 수치적 연구)

  • Kim Nam-Jin;Chun Won-Gee;Kim Chong-Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.270-278
    • /
    • 2006
  • The idea of carbon dioxide sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500 m in depth. by fixed pipeline are peformed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

A Study on Biofilm Detachment in an IFBBR (역 유동층 생물막 반응기에서의 생물막 탈착에 관한 연구)

  • 김동석;박영식
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFRBR). The biofilm thickness, 5 and the bioparticle density, Pm were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, h. The correlations were expressed as $\delta$=6l.6+16.33$b_c$-0.004Re and Ppd=0.3+0.027$b_c$- 2.93x$l0^{-5}$ no by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0.44.+0.82F/M-5.Ix10$-4^{$\delta$}$. Specific biofilm detachment rate, bds was influenced by FIM ratio and Reynolds number as $b_{ds}$=-0.26+0.26F/M+ 2.17$\times$$10^{-4}$Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBRR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.

  • PDF