• Title/Summary/Keyword: Air battery

Search Result 280, Processing Time 0.047 seconds

Performance Evaluation of a Portable GC for Real-time Monitoring of Volatile Organic Compounds (휘발성 유기화합물의 실시간 모니터링을 위한 휴대형 GC의 성능 평가)

  • You, Dong-Wook;Seon, Yeong-Sik;Oh, Jun-Sik;Yi, Bongyoon;Kim, Hyun Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.327-333
    • /
    • 2020
  • Performance of a portable GC that can be utilized for the real time determination of volatile organic compounds in air was evaluated. It employs purified/compressed ambient air as the carrier gas eliminating the need for high pressure gas tanks. The compact system with dimensions of 35 × 26 × 15 ㎤ and weight of 5 kg is powered by either a 24 V DC external adapter or battery pack. Chromatograms of the mixture sample including benzene, toluene, ethylbenzene, and oxylene at concentrations of 1 ppmv and 20 ppmv represent a good reproducibility: 3.79% and 0.48% relative standard deviations (RSDs) for peak area variations; 0.40% and 0.08% RSDs for retention times. The method detection limit was 0.09 ppmv. A 30 m long, 0.28 mm I.D. column operated at an optimal condition yielded a peak capacity of 61 with good resolution for a 10 min isothermal analysis. The relative standard deviations (RSD) of the peak area variations and retention times during consecutive measurements over 27 h were less than 2.4%RSD and 0.5%RSD, respectively. Thus, this instrument makes it suitable for continuous and field analysis of low-concentration VOC mixtures in the indoor/outdoor environment as well as the spillage accident of hazardous chemicals.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Cohort Observation of Blood Lead Concentration of Storage Battery Workers (축전지공장 근로자들의 혈중 연농도에 대한 코호트 관찰)

  • Kim, Chang-Yoon;Kim, Jung-Man;Han, Gu-Wung;Park, Jung-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.3 s.31
    • /
    • pp.324-337
    • /
    • 1990
  • To assess the effectiveness of the interventions in working environment and personal hygiene for the occupational exposure to the lead, 156 workers (116 exposed subjects and 40 controls) of a newly established battery factory were examined for their blood lead concentration (Pb-B) in every 3 months up to 18 months. Air lead concentration (Pb-A) of the workplaces was also checked for 3 times in 6 months interval from August 1987. Environmental intervention included the local exhaust ventilation and vacuum cleaning of the floor. Intervention of the personal hygiene included the daily change of clothes, compulsory shower after work and hand washing before meal, prohibition of cigarette smoking and food consumption at the work site and wearing mask. Mean Pb-B of the controls was $21.97{\pm}3.36{\mu}g/dl$ at the preemployment examination and slightly increased to $22.75{\pm}3.38{\mu}g/dl$ after 6 months. Mean Pb-B of the workers who were employed before the factory was in operation (Group A) was $20.49{\pm}3.84{\mu}g/dl$ on employment and it was increased to $23.90{\pm}5.30{\mu}g/dl$ after 3 months (p<0.01). Pb-B was increased to $28.84{\pm}5.76{\mu}g/dl$ 6 months after the employment which was 1 month after the initiation of intervention program. It did not increase thereafter and ranged between $26.83{\mu}g/dl\;and\;28.28{\mu}g/dl$ in the subsequent 4 tests. Mean Pb-B of the workers who were employed after the factory had been in operation but before the intervention program was initiated (Group B) was $16.58{\pm}4/53{\mu}g/dl$ before the exposure and it was increased to $28.82{\pm}5.66{\mu}g/dl$(P<0.01) in 3 months later (1 month after the intervention). The values of subsequent 4 tests remained between 26.46 and $28.54{\mu}g/dl$. Mean Pb-B of the workers who were employed after intervention program had been started (Group C) was $19.45{\pm}3.44{\mu}g/dl$ at the preemployment examination and gradually increased to $22.70{\pm}4.55{\mu}g/dl$ after 3 months(P<0.01), $23.68{\pm}4.18{\mu}g/dl$ after 6 months, and $24.42{\pm}3.60{\mu}g/dl$ after 9 months. Work stations were classified into 4 parts according to Pb-A. The Pb-A of part I, the highest areas, were $0.365mg/m^3$, and after the intervention the levels were decreased to $0.216mg/m^3\;and\;0.208mg/m^3$ in follow-up tests. The Pb-A of part II was decreased from $0.232mg/m^3\;to\;0.148mg/m^3,\;and\;0.120mg/m^3$ after the intervention. Pb-A of part III and W was tested only after intervention and the Pb-A of part III were $0.124mg/m^3$ in Jannuary 1988 and $0.081mg/m^3$ in August 1988. The Pb-A of part IV not stationed at one place but moving around, was $0.110mg/m^3$ in August 1988. There was no consistent relationship between Pb-B and Pb-A. Pb-B of the group A and B workers in the part of the highest Pb-A were lower than those of the workers in the parts of lower Pb-A. Pb-B of the workers in the part of the lowest Pb-A incerased more rapidly. Pb-B of group C workers was the highest in part I and the lowest in part IV. These findings suggest that Pb-B is more valid method than Pb-A for monitoring the health of lead workers and intervention in personal hygiene is more effective than environmental intervention.

  • PDF

Relationship on the lead exposure indices and symptoms by ALAD genotype in lead worker (연 노출 근로자들의 ALAD genotype에 따른 연 노출지표 및 증상과의 관련성)

  • Ahn, Kyu Dong;Lee, Jong Chun;Cho, Kwang Sung;Kim, Jin Ho;Lee, Sung Soo;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • A cross-sectional study was performed to evaluate associations between lead biomarkers, lead-related symptoms, and ${\delta}$-aminolevulinic acid dehydratase (ALAD) genotype among 598 lead workers and 144 control office workers in storage battery industries, secondary smelting and litharge making industries. Lead inhibits the second enzymes, ALAD, in the heme synthesis pathway. ALAD gene, which codes for one of three isozymic proteins (termed ALAD1-1, ALAD1-2, and ALAD2-2), seems to modify the toxicokinetics of lead. The result as follows; The percents of total workers whose genotype of ALAD1-1 and ALAD1-2 were 88.4% and 11.6%, respectively. The zinc protoporphyrin in blood (ZPP) and ${\delta}$-aminolevulinic acid in urine (ALAU) of lead workers with ALAD1-2 were significantly lower than those of lead workers with ALAD1-1, but there were no significant difference between two genotype for blood lead, age, and work duration. The proportion of ALAD1-2 genotype in control office workers was 13.2%. The proportions of ALAD1-2 genotype of lead workers were 14.0%(their mean air lead level below $0.024mg/m^3$), 10.4%($0.025-0.049mg/m^3$), 11.8%($0.050-0.099mg/m^3$), and 9.4%(above $0.100mg/m^3$), respectively. In the logistic analysis of 15 lead related symptoms, 'arthralgia'(S7) symptom of ALAD1-2 was significantly lower (OR=0.481; 95% CI=0.248-0.932) than that of ALAD1-1, but 'feeling of irritation'(S11) of ALAD1-2 was significantly higher(OR=1.636; 95% CI=1.035-2.586) than that of ALAD1-1 after controlling possible confounder (blood lead, work duration, smoking and drinking habit).

  • PDF

Characteristics of Degradation and Improvement of Properties with Conducting Polypyrrole (전도성 Polypyrrole의 분해 특성과 물성 개선)

  • Lee, Hong-Ki;Eom, Jung-Ho;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.764-771
    • /
    • 1994
  • Electrochemical synthesis of conductive polypyrrole films was carried out in nucleophilic solvent containing p-toluenesulfonic acid or bezensulfonic acid as supporting electrolyte and dopant. Also characteristics of degradation and improvement of mechanical properties were studied. The conductivity, tensile strength and elongation of the films obtained in dimethyformamide/p-toluenesulfonic acid had the highest value of 10-40S/cm, $25N/mm^2$ and 10%, respectively. The optimum condition of electrochemical synthesis was $2mA/cm^2$ for constant current method and 0.9V for constant potential method containing 0.5M pyrrole and 0.5M p-TSA. The obtained films showed good stability in air and electrode characteristics of secondary battery by reversibility in doping and undoping. The degradation process was 1st order reaction at various temeprature. The activation energy and rate constant of degradation reaction were $1.01JK^{-1}mol^{-1}$ and $3.1{\times}10^{-7}min^{-1}$ respectively at $25^{\circ}C$. For the improvement of mechanical properties, composition of polypyrrole films with various host polymer were investigated and increase of tensile strength and elongation was confirmed.

  • PDF

Synthesis of Li2MnSiO4 by Solid-state Reaction (고상반응법을 이용한 Li2MnSiO4 합성)

  • Kim, Ji-Su;Shim, Joong-Pyo;Park, Gyung-Se;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.398-402
    • /
    • 2012
  • Synthesis of $Li_2MnSiO_4$ was attempted by the conventional solid-state reaction method, and the phase formation behavior according to the change of the calcination condition was investigated. When the mixture of the three source materials, $Li_2O$, MnO and $SiO_2$ powders, were used for calcination in air, it was difficult to develop the $Li_2MnSiO_4$ phase because the oxidation number of $Mn^{2+}$ could not be maintained. Therefore, two-step calcination was applied: $Li_2SiO_3$ was made from $Li_2O$ and $SiO_2$ at the first step, and $Li_2MnSiO_4$ was synthesized from $Li_2SiO_3$ and MnO at the second step. It was easy to make $Li_2MnSiO_3$ from $Li_2O$ and $SiO_2$. $Li_2MnSiO_4$ single phase was developed by the calcination at $900^{\circ}C$ for 24 hr in Ar atmosphere as the oxidation of $Mn^{2+}$ was prevented. However, the $Li_2MnSiO_4$ was ${\gamma}-Li_2MnSiO_4$, one of the polymorph of $Li_2MnSiO_4$, which could not be used as the cathode materials in Li-ion batteries. By applying the additional low temperature annealing at $400^{\circ}C$, the single phase ${\beta}-Li_2MnSiO_4$ powder was synthesized successfully through the phase transition from ${\gamma}$ to ${\beta}$ phase.

The Application of Relays for Noise Reduction in the Combat Vehicle Distribution Box (전투차량용 분배함의 노이즈 감소를 위한 릴레이 응용)

  • Kwak, Daehwan;Park, Dong Min;Oh, Eunbin;Kim, Chang Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.235-240
    • /
    • 2020
  • This study evaluated the improvements for circuits of a combat vehicle distribution box to reduce the noise generated in electromagnetic compatibility (EMC) testing. An analysis of the distribution boxes that failed the standard revealed the conducted noise generated from the converter and semiconductor switching elements on the circuit board. The distribution box transfers power from the generator and battery to the cooling system of a combat vehicle to keep turning the air conditioner on and off. Two methods were proposed to overcome this problem: a passive filter was added to the circuit board for the first method, and the converter and switching elements were replaced with the relays for the second method. Both methods were effective in reducing noise, but a greater improvement was obtained from the second method. The second method was applied to a combat vehicle system and was found to be suitable according to the EMC standards.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.