• Title/Summary/Keyword: Air atomization

Search Result 324, Processing Time 0.019 seconds

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines (소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

Development of Spherical Granule of Fermented Red Ginseng Extracts (발효홍삼농축액 구형과립 제조 기술 개발)

  • Shin, Myung-Gon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1064-1071
    • /
    • 2015
  • Viscous fermented red ginseng extracts were dried and coated using a fluidized bed coater to increase convenience and consumer acceptance. The methods for making spherical granules of fermented red ginseng extracts with increasing convenience were established by using indigestible dextrin. Spherical granules of fermented red ginseng extracts with increasing convenience were made by mixing indigestible dextrin at 40% (40% IDD), 50% (50% IDD), and 60% (60% IDD) versus the soluble solid content of fermented red ginseng extracts. Spherical granules of fermented red ginseng extracts showed less angle of repose than powder of fermented red ginseng extracts. This means that spherical granules of fermented red ginseng extracts had good fluency with increased convenience. The more indigestible dextrin showed higher yields. Although 50% IDD showed less yield than 60% IDD, 50% IDD was the best mixing ratio for making spherical granules of fermented red ginseng extracts, as fermented red ginseng extracts is known as a healthy food. The optimized operation conditions of the fluidized bed coater for making 50% IDD were feeding rate 0.54 mL/min, atomization air pressure 2.15 bar, and product temperature $83.03^{\circ}C$.