• Title/Summary/Keyword: Air atomization

Search Result 321, Processing Time 0.026 seconds

A Study on the Propriety of Ultrasonic Atomization Apparatus for the Gasoline Engine (l) - In the Case of the Atomization of Fual - (가솔린 기관용 초음파 미립화장치의 타당성에 관한 연구 (I) - 연료 미립화를 중심으로 -)

  • 조규상
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.41-49
    • /
    • 1987
  • It is an experimental study to improve the characteristics of combustion and exhaust emission gas in the gasoline engine. These characteristics are influenced by the fuel droplet size. To improve these characteristics, we make the ultrasonic atomization apparatus, and compare with the commercial carburetor. The results obtained are as follows: 1. Maximum atomization quantity is obtained by the vibrator of resonancy frequency 1.65MHz in the ultrasonic atomization apparatus. 2. With ultrasonic atomization apparatus, more than 99% of atomization rate can be obtained regardless of intake air temperature, velocity, and air-fuel ratio. 3. Atomization rate of the commercial carburetor increases with the air-fuel ratio and intake air temperature. 4. Difference of atomization rate between the ultrasonic atomization apparatus and the commercial carburetor increases with decreasing air-fuel ratio. 5. Droplet size is about 1-5.mu.m at the ultrasonic atomization apparatus, and 80-150.mu.m at the commercial carburetor, which indicates the ultrasonic atomization apparatus is excellent in atomization.

  • PDF

Analysis of spray cone angle of air assisted flash atomization (공기보조식 (air-assisted) 플래쉬 분무의 분무 각 확대 특성 연구)

  • Yu, Tae-U;Kim, Sae-Won;Bang, Byong-Ryeol
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • When the water jets heated up to the saturation temperature at a high line pressure are sprayed into a reduced (atmospheric) pressure through an air-assisted nozzle, the jets experience sudden exposure into a reduced pressure, get superheated and produce steam bubbles while atomization processes of jets are taking place. This process is called flash atomization. In this study the flash atomization of superheated water jets assisted by air has been studied. Sprays with flash atomization have been photographed at various water and air flow rates and water superheats. It has been found that the spray angle with flash atomization increases with water superheat and water flow rate but decreases with air flow rate. The degree of change of spray angle has been analyzed and correlated as a function of superheat, air and water flow rates.

  • PDF

The Effect of the Air Temperature and Air-assisted Pressure on the Fuel Droplet Atomization (분무 공간의 공기온도와 보조공기의 공급압력이 연료입자의 미립화에 미치는 영향)

  • Kim, Y.S.;Lee, J.S.;Yoon, S.H.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.16-24
    • /
    • 1998
  • The fuel injection type, in the gasoline engines of atomization of fuel droplet and its distribution hae influenced directly on the decision of engine performance and harmful emission. In this paper, atomization characteristics of fuel spray is investigated with microscopic visualization system. Particle motion analysis system is used to measure the SMD from fuel spray of air-assisted injector by initial factors such as temperature of ambient air and air-assisted pressure. As air-assist pressure and ambientair temperature increase, the SMD is decreased, and its variation is more stable.

  • PDF

Atomization Improvement of a Liquid Jet with Wall Impingement and its Application to a Jet Engine Atomizer

  • Shiga, Seiichi
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.176-189
    • /
    • 2006
  • In the present study, capability of improving the liquid atomization of a high-speed liquid jet by using wall impingement is explored, and its application to a jet engine atomize. is demonstrated. Water is injected from a thin nozzle. The liquid jet impinges on a wall positioned close to the nozzle exit, forming a liquid film. The liquid film velocity and the SMD were measured with PDA and LDSA, respectively. It was shown that the SMD of the droplets was determined by the liquid film velocity and impingement angle, regardless of the injection pressure or impingement wall diameter. When the liquid film velocity was smaller than 300m/s, a smaller SMD was obtained, compared with a simple free jet. This wall impingement technique was applied to a conventional air-blasting nozzle for jet engines. A real-size air-blasting burner was installed in a test rig in which three thin holes were made to accommodate liquid injection toward the intermediate ring, as an impingement wall. The air velocity was varied from 41 to 92m/s, and the liquid injection pressure was varied from 0.5 to 7.5 MPa. Combining wall impinging pressure atomization with gas-blasting produces remarkable improvement in atomization, which is contributed by the droplets produced in the pressure atomization mode. Comparison with the previous formulation for conventional gas-blasting atomization is also made, and the effectiveness of utilizing pressure atomization with wall impingement is shown.

  • PDF

Spray Characteristics of the Air-Shrouded Injectors (공기보조 인젝터의 분무특성 연구)

  • 김기성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.82-90
    • /
    • 2000
  • Improving the atomization characteristics by adopting the Air-Shrouded injector has been considered as one of the important methods for decreasing HC emissions in SI engines. Thus, in this study for the purpose of developing Air-Shrouded injector which has a finer spray, atomization characteristics of different types of commercial Air-Shrouded injectors were investigated through the spray imaging and the drop size measurements. As a result, it was found that the internal mixing type of Air-shrouded injector had a good atomization characteristics. But, a number of large droplets were found in the internal mixing type commercial injector, this phenomenon was improved by adopting the thread type nozzle passages.

  • PDF

A Study on the Analysis of Atomization Mechanism for the Air Shrouded Injector (공기 보조 미립화 인젝터의 미립화 메카니즘 해석에 관한 연구)

  • 김봉규;이기형;이창식;서영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.57-62
    • /
    • 2001
  • EFI system has severe problems of heavy HC emission generated by large fuel droplets and non-uniform air-fuel mixture. Therefore, various atomization techniques are being developed in order to reduce HC emission. The one among those techniques is ar shrouded injector, which has better atomization ability and demands less power loss than other atomizers. Thus, the development of this air shrouded injector can be major topic to cope with international emission regulation. Nevertheless, there are few domestic and foreign studies which deal with air shrouded injector. In this study, the spray characteristics and atomization mechanism of the representative air shrouded injector were analyzed using PDPA system. From experimental results, the definite standards of air shrouded injector's spray characteristics were established.

  • PDF

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

Spray Behavior and Atomization Characteristics of Air-Assist Type Gasoline Fuel Injector (공기보조형 가솔린 연료 분사기의 분무거동 및 미립화 특성)

  • 노병준;강신재;김원태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 1998
  • To investigate the spray behavior and atomization characteristics using an air-assist injector, spray visualization and PDPA measurements were carried out under the various assisted air pressures and the fixed fuel pressure. The air assist pintle type injector employed in this study is consisted of the air assist adaptor and an injector housing using the gasoline fuel and air as the working fluids. As results, increasing pressure of assisted air, the growth of spray tip penetration is gradually reduced at the end of spray and spray angle is steadily increased at the main spray region except from the early spray. For the air assist pressure of 25㎪ in a spray downstream, it is doncluded that droplet size distribution shows the peak of 10${\mu}{\textrm}{m}$ and most of the droplet sizes are less than 50${\mu}{\textrm}{m}$. Also, the air-assist injector extremely improves fuel atomization in order to produce much finer droplets, it shows that approximately, in this case, 50% decreade of SMD than without air assit.

  • PDF

An Experiment on Performance Evaluation of a Direct Atomization Type Air Washer System for Semiconductor Clean Rooms (반도체 클린룸용 직접분무식 에어와셔 시스템의 성능평가실험)

  • Yeo, Kuk-Hyun;Yoo, Kyung-Hoon;Tae, Kyung-Eung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.988-992
    • /
    • 2006
  • In recent semiconductor manufacturing clean rooms, air washers are used to remove airborne gaseous contaminants such as $NH_3,\;SO_x$ and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. It is desirable to recover heat from exhaust air and use it to reheat outdoor air. In the present study, an experiment was conducted to investigate the heat recovery and gas removal efficiencies of a direct atomization type heat recovery air washer.

  • PDF