• Title/Summary/Keyword: Air atmosphere

Search Result 1,572, Processing Time 0.025 seconds

Effect of Cell Cycle Stage on the Development of Embryos Produced by Cumulus Cell Nuclear Transfer in Hanwoo (Korean Cattle)

  • Im, G.S.;Yang, B.S.;Yang, B.C.;Chang, W.K.;Yi, Y.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.759-764
    • /
    • 2001
  • This study was carried out to investigate the effect of activation timing, cell cycle and passage on the development of embryos produced by cumulus cell nuclear transfer in Hanwoo (Korean cattle). Nuclear donor cumulus cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $38.5^{\circ}C$ in a humidified atmosphere of 5% $CO_2$ in air. The 1~6 passages of serum deprived or actively dividing cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One pulse of 180 volts for $15{\mu}s$ was applied to induce the fusion between karyoplast and cytoplast. The activation was done before or after the fusion. To activate, oocytes were treated with $10{\mu}M$ calcium ionophore for 5 min immediately followed by 2 mM 6-dimethylaminopurine for 3 h. The nuclear transfer embryos were cultured in $500{\mu}l$ of modified CRlaa supplemented with 3 mg/ml BSA in four well dish covered with mineral oil. After 3 days culture, culture medium was changed into modified CRlaa medium containing 1.5 mg/ml BSA and 5% FBS for 4 days. The incubation environment was 5% $CO_2$, 5% $O_2$, 90% $N_2$ at $38.5^{\circ}C$. There was no blastocyst formation when the nuclear transfer embryos were activated before the fusion, whereas, 29.9% of blastocyst formation was shown when the nuclear transfer embryos were activated after the fusion. When serum deprived and actively dividing cumulus cells were used as nuclear donor cells, the developmental rates to blastocyst were 38.5% and 40.6%, respectively. There was no significant difference between serum deprived and actively dividing cells in the developmental rates. The developmental rates to blastocyst according to 1~6 passages were 37.5~44.4%. However, there were no significant differences among passages. These results indicate that 1~6 passage cumulus cell irrespective of cell cycle could support development of nuclear transfer embryos activated after the fusion.

N2O and CH4 Emission from Upland Forest Soils using Chamber Methods (플럭스챔버에 의한 N2O와 CH4의 산림에서의 토양배출량 측정연구)

  • Kim, Deug-Soo;Kim, Soyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.789-800
    • /
    • 2013
  • $N_2O$ and $CH_4$, Greenhouse gas emission, Forest soil, Closed chamber technique, Soil uptake $N_2O$ and $CH_4$ are important greenhouse gases (GHG) along with $CO_2$ influencing greatly on climate change. Their soil emission rates are highly affected by bio-geo-chemical processes in C and N through the land-atmosphere interface. The forest ecosystems are generally considered to be net emission for $N_2O$; however, net sinks for $CH_4$ by soil uptake. Soil $N_2O$ and $CH_4$ emissions were measured at Mt. Taewha in Gwangju, Kyeonggi, Korea. Closed chamber technique was used for surface gas emissions from forest soil during period from May to October 2012. Gas emission measurement was conducted mostly on daytime (from 09:00 to 18:00 LST) during field experiment period (total 25 days). The gas samples collected from chamber for $N_2O$ and $CH_4$ were analyzed by gas chromatography. Soil parameters were also measured at the sampling plot. GHG averages emissions during the experimental period were $3.11{\pm}16.26{\mu}g m^{-2}hr^{-1}$ for $N_2O$, $-1.36{\pm}11.3{\mu}gm^{-2}hr^{-1}$ for $CH_4$, respectively. The results indicated that forest soil acted as a source of $N_2O$, while it acted like a sink of $CH_4$ on average. On monthly base, means of $N_2O$ and $CH_4$ flux during May (spring) were $8.38{\pm}48.7{\mu}gm^{-2}hr^{-1}$, and $-3.21{\pm}31.39{\mu}gm^{-2}hr^{-1}$, respectively. During August (summer) both GHG emissions were found to be positive (averages of $2.45{\pm}20.11{\mu}gm^{-2}hr^{-1}$ for $N_2O$ and $1.36{\pm}9.09{\mu}gm^{-2}hr^{-1}$ for $CH_4$); which they were generally released from soil. During September (fall) $N_2O$ and $CH_4$ soil uptakes were observed and their means were $-1.35{\pm}12.78{\mu}gm^{-2}hr^{-1}$ and $-2.56{\pm}11.73{\mu}gm^{-2}hr^{-1}$, respectively. $N_2O$ emission was relatively higher in spring rather than other seasons. This could be due to dry soil condition during spring experimental period. It seems that soil moisture and temperature mostly influence gas production and consumption, and then emission rate in subsoil environment. Other soil parameters like soil pH and chemical composition were also discussed with respect to GHG emissions.

Gas/particle Partitioning of PAHs Segregated with Particle Size in Equilibrium States (대기 중 PAHs의 입경별 가스/입자 분배평형에 관한 연구)

  • Park, Jin-Soo;Lee, Dong-Soo;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1270-1276
    • /
    • 2005
  • When gas/particle partitioning of PAHs in the atmosphere approached an equilibrium state, the slope of linear regression between gas/particle partitioning coefficient($logK_p$) and subcooled liquid vapour pressure($logP_L^O$) was -1. But it was alleged that the slope of equilibrium state might not be -1 in real atmospheric environment due to heterogeneous characteristics of particulate matter. In This study, it would be found if gas/particle partitioning of PAHs segregated with particle size in equilibrium state was based on the hypothesis mentioned above. We have calculated the slopes of $logK_p$ v.s. $logP_L^O$ after collecting 10 set samples which consisted of particulate and vaporous phases. The slope was close to -1 in equilibrium states. But despite of equilibrium state, all slopes segregated with particle size were not close to -1 and those were gentler with larger particle size. The difference of slopes in equilibrium states was almost against the assumption of gas/particle partitioning theory. When the gas/particle partitioning was due to adsorption, the desorption enthalpy was different in each particle size. When it was absorption, the activity coefficient was different. The difference of desorption enthalpy and activity coefficient in each particle size indicate the heterogeneous characteristics of the bulk particle. This may be the reason for slope variation with particle size even though in an equilibrium state.

Effect of Epidermal Growth Factor (EGF) on Meiotic Maturation and Pronuclear Formation of Porcine Oocytes Produced In Vitro

  • Song S. H.;Kim J. G.;Song H. J.;Kumar B. Mohana;Cho S. R.;Choe C. Y.;Choi S. H.;Rho G. J.;Choe S. Y.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.127-131
    • /
    • 2005
  • The objective of this study was to examine the effect of EGF on meiotic maturation and pronuclear (PN) formation of porcine oocytes. Prepubertal gilt cumulus-oocyte-complexes (COCs) aspirated from $2\~6mm$ follicles of abbatoir ovaries were matured in TCM199 containing 0.1mg/ml cysteine, $0.5{\mu}/ml$ FSH and LH, and EGF (0, 5, 10, 20, 40 ng/ml) for 22 hr at $39^{\circ}C$ in a humidified atmosphere of $5\%$ $CO_2$ in air. They were then cultured for an additional 22hr without hormones. In Experiment 1, to examine the nuclear maturation at 44hr of culture, the expanded cumulus cells were removed by vortexing for 1 min in 3 mg/ml hyaluronidase. The oocytes were fixed in acetic acid: methanol (1:3, v/v) at least for 48 hr and stained with $1\%$ orcein solution for 5 min. Nuclear status was classified as germinal vesicle (GV), germinal vesicle breakdown (GVBD), prophase-metaphase I (PI-MI), and PII-MII under microscope. In Experiment 2, to investigate PN formation, oocytes were fertilized with Percoll-treated freshly ejaculated sperm $(1\times10^5\; cells/ml)$ in mTBM with $0.3\%$ BSA and 2mM caffeine for 5hr, and cultured in NCSU-23 medium with $0.4\%$ BSA. At 6hr of culture, the embryos were fixed in $3.7\%$ formaldehyde for 48hr and stained with 10ug/ml propidium iodide for 30 min. PN status was classified as no or one PN (unfertilized), 2 PN (normal fertilized) and $\geq3$ PN (polyspermy). Differences between groups were analyzed using one-way ANOVA after arc-sine transformation of the proportional data. The rate of oocytes that had reached to PII-MII were significantly (P<0.05) higher in all groups added EGF than that of non-treated group $(67\%)$, but it did not differ among the all added groups $(86\%,\;85\%,\;79\%\;and\;81\%$, in 5, 10, 20 and 40 ng/ml EGF, respectively). No differences on the incidence of 2PN were observed in all treated groups $(25\%,\;30\%,\;33\%,\;29\%\;and\;29\%$, in 0, 5, 10, 20 and 40 ng/ml EGF, respectively), however, in non-treated group, polyspermy tended to be increased ($66\%\;vs\;. 58\%,\;54\%,\;52\%\;and\;55\%$, 0 vs. 5, 10, 20, 40 ng/ml EGF, respectively). These results suggest that EGF can be effectively used as an additive for enhancing oocyte maturation and reducing the incidence of polyspermy in pig.

Maximization of The Number of Follicular Oocytes Recovered from The Bovine Ovaries (소 난소로부터 회수난포란수의 극대화 방법)

  • 유형진;최승철;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1993
  • A new technique was established to maximize the numbers of follicular oocytes recovered from the ovaries obtained at the slaughter house. And their further developmental capacity was demonstrated. There recovery techniques were used; aspiration (ASP, control), slicing (SLC) and slicing combining aspiration (ASP+SLC). Recovered oocytes were cultured in TCM 199+15% FCS+gonadotrophins in an atmosphere of 5% CO$_2$ in air at 39$^{\circ}C$ for 24 h. The nuclear maturation was detemined with chromo-some configuration by rapid staining. And cytoplasmic maturation was examined by the formation of female pronuclei with parthenogenetic activation of the matured oocyte after 18 h of co-culture with granulosa cell monolayer. Total 1,641 bovine follicular oocytes recovered from 245 ovaries. The number of oocytcs per ovary was 1.87 in ASP, 11.05 in SLC and 7.88 in ASP+SLC, respectively. SLC would yield 5.9 folds increase, compared with ASP. The rate of maturation were 92.9% in ASP, 79.1% in SLC and 71.7% in ASP+SLC, respectively. Although the maturation rate in ASP was the highest, metaphase II oocytes per ovary in SLC was 5 times higher than that of ASP. The rates of pronuclei formation upon ethanol activation were 75% in ASP, 67% in SLC and 62.5% in ASP+SLC, respectively. The results demonstrate that it should be possible to maximize the number of the follicular oocyte from the ovary for mass production of bovine embryos. Thus the established technique may provide efficient supply of bovine embryos for biochemical and molecular study of early bovine embryos.

  • PDF

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.

Operation of Official Satellite Re-entry Monitoring Room in Korea (국내 위성추락상황실 운영)

  • Jo, Jung Hyun;Choi, Young-Jun;Yim, Hong-Suh;Choi, Jin;Son, Ju-Young;Jeon, Hyun-Seock;Bae, Young-Ho;Moon, Hong-Kyu;Kim, Myung-Jin;Park, Jang-Hyun;Lim, Yeo-Myeong;Kim, Ji-Hye;Hyun, Sung-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.150-158
    • /
    • 2013
  • In Korea, the official monitoring of the atmospheric re-entry of satellites or space debris was initiated by the first operation of a re-entry situation analysis team for the 'Cosmos 1402' of the Soviet Union, which main body re-entered on January 23, 1983 and radio active core re-entered on February 7, 1983. After this incident, a task force team consisting Korea Astronomy and Space Science Institute (KASI), Korea Aerospace Research Institute (KARI) and other related institutes operated a situation monitoring group under the supervision of the Ministry of Science and technology (MOST) for the controlled re-entry of the Russian 'Mir' space station in 2001. The re-entry of the upper atmospheric weather satellite 'UARS' of United States had been monitored and analyzed by KASI on September 24, 2011. As the re-entry of the space object has been frequently occurred, the government officials and the experts from MEST (Ministry of Education, Science and Technology), KASI, KARI had an urgent official meeting to establish a satellite re-entry monitoring room in KASI and to give an operational authority to KASI in September 14, 2011. Under this decision, the satellite re-entry monitoring room in KASI has successfully executed the monitoring, data analyzing, official reporting, media contacting, and public announcing for the German satellite 'Roentgen' in October 2011, Russian space explorer 'Phobos-Grunt' in January 2012, Russian satellite 'Cosmos 1484' in January 2013, and European geodetic satellite 'GOCE' in November 2013 with the support from the Korean Air Force and KARI.

Breakdown Characteristics of Teflon by N2-O2 Mixture gas (N2-O2 혼합가스에 따른 Teflon의 절연파괴특성)

  • Choi, Eun-Hyeok;Choi, Byoung-Sook;Park, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • With the increasing development of industrial society and the availability of high quality electrical energy, the simplification of operation and maintenance procedures is required, in order to ensure the reliability and safety of electrical systems. In this paper, the dielectric breakdown characteristics of $N_2-O_2$ mixed gas solid insulation, which is used as an alternative to SF6 in various electric power facilities, are verified. When the gas mixture has a composition ratio similar to that of the atmosphere, the dielectric breakdown characteristics are relatively stabilized. It was confirmed that the breakdown voltage of the gas in the electrode near an equal electric field increased with increasing pressure according to Paschen's rule. The breakdown voltage of the surface increased linearly with increasing pressure, and the difference was caused by the mixing ratio of $O_2$ gas. This change in the surface insulation breakdown voltage was caused by the influence of the electrically negative $O_2$ gas and the intermolecular collision distance. In this study, the influence of the intermolecular impact distance was larger (than that in the absence of the electrically negative $O_2$ gas). The breakdown voltage relation applicable to Teflon according to the surface insulation characteristics was calculated. The characteristics of the surface insulation properties of Teflon, which is used as a solid insulation material, were derived as a function of pressure. It is thought that these results can be used as the basic data for the insulation design of electric power facilities.

Recent Trends of Vessel-Source Pollution (선박 기인 오염물의 처리동향 및 대책)

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.97-104
    • /
    • 2006
  • Though stringent guidelines are in place to protect the harbor environment, pollution from ships, from the ports terminals. Discharge from the ballast tanks of ships, though illegal, does occur. Such vessels, arriving from distant ports of call, can introduce exotic species of plants and animals, causing disruption of the local food web. Discharges rich in nitrogen can generate the rapid growth of plankton, eventually leading to a condition known as red tide that is lethal to some coastal organisms. In addition to the harbor's negative effects on marine organisms, the diesel engines of the ships and the trucks that haul cargo to and from the ports release large volumes of diesel exhaust into the atmosphere. IMO(International Maritime Organization) is strongly proceeding with adoption of a new maritime environment convention and coming into effect for regulation enhancement about the pollutants which are happened in a ship recently. Study about the conventions that our country currently comes into effect, and there is during forwarding and correspondence must be performed effectively. In this paper, International convention on the control of harmful Anti-Fouling system on ship, Ballast water management, Prevention of air pollution from ships, treat a main pending problem in ocean related environmental regulation convention.

  • PDF

Bidirectional Factor of Water Leaving Radiance for Geostationary Orbit (정지궤도를 위한 해면방사휘도$(L_w)$의 양방향 계수 (bidirectional factor) 평가 연구)

  • Park, Jin-Kyu;Han, Hee-Jeong;Mun, Jeong-Eon;Yang, Chan-Su;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.181-186
    • /
    • 2006
  • Geostationary Orbit satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with everyone hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. However, Sun-synchronous polar-orbit satellites able to take a picture of target region same time a everyday. Thus Ocean signal is almost same. Accordingly, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite-sun-target points. This relative ratio called bidirectional factor. To find relationship between time and $[L_w]_N$/Bidirectional Factor differences, we are calculate solar position, geometry parameters. And reflectance, total radiance at the top of atmosphere(). And water leaving radiance, normalized water leaving radiance. And calculate bidirectional factor, that is the ratio of $[L_w]_N$ between target region and aiming the point. Then, we can make the bidirectional factor lookup table for one year imaging. So, we suggested for necessary to simulation experiment bidirectional factor in more various condition(wavelength and ocean/air condition).

  • PDF