• Title/Summary/Keyword: Air and water environment

Search Result 1,164, Processing Time 0.032 seconds

An Analysis of the Temperature Change Effects of Restoring Urban Streams in Busan Area (부산지역 도심하천 복원에 따른 기온변화 효과 분석)

  • Jung, Woo-Sik;Do, Woo-Gon
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.939-951
    • /
    • 2012
  • This study is conducted to estimate the air temperature decreasing effects by restoring urban streams using WRF/CALMET coupled system. The types of land use on covered streams are constructed with the land cover map from Korea ministry of environment. Restoring covered streams changes the types of land use on covered areas to water. Two different types of land use(CASE 1 and CASE 2) are inputted to the WRF/CALMET coupled system in order to calculate the temperature difference. The results of the WRF/CALMET coupled system are similar to the observed values at automatic weather stations(AWS) in Busan area. Restoring covered streams causes temperature to be decreased by about $0.34{\sim}2^{\circ}C$ according to the locations of streams and the regions that temperature is reduced are widely distributed over the restored area. Reduction of temperature is increased rapidly from morning and maximus at 13LST. Natural restoration of streams will reduce the built-up area within urban. With this, temperature reductions which are the cause to weaken the urban heat island appear. Relief of urban heat island will help to improve the air quality such as accumulation of air pollutants in within urban area.

Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve (가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가)

  • Hur, Jurn;Lee, Suk- Jong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

Time Series Simulation of Explosive Charges In Shallow Water Using Ray Approach

  • Hahn, Jooyoung;Lee, Seongwook;Na, Jungyul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.133-140
    • /
    • 2003
  • A time series simulation is presented by a ray approach for the simulating the received waveform of a broadband acoustical signals interacting with the ocean boundaries. The environment is assumed to be horizontally stratified, and the seafloor is described in terms of homogeneous fluid half-space. The ray approach includes the effects of reflection from the air-water, water-sediment interface and phase shifts due to boundaries interaction. To generate time series, we assume that the acoustic energy propagates from source to receiver along eigenrays and represent the action of the bottom on the incident wave by a linear filter and characterized in the frequency domain by the transfer function. As example application, the time series for an explosive source in a shallow water environment is calculated and analyzed in terms of acoustical process. good agreement with measured time series is demonstrated.

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Characteristics and Status of Persistent Organic Pollutants and Heavy Metals in Ambient Air (대기 중 잔류성 유기오염물질과 중금속의 특성과 현황)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.113-132
    • /
    • 2003
  • In May 2001, the Stockholm Convention on Persistent Organic Pollutants (POPs) for phasing out and eliminating POPs was signed by 90 countries at the Diplomatic Meeting in Stockholm. In 1998, three years before the Convention, the protocols on POPs and heavy metals were adopted by the United Nations Economic Commission for Europe under the Convention on Long-Range Transboundary Air Pollution. Growing attention on POPs and heavy metals during the past 10 years is primarily due to their toxicity in minute quantities. POPs and some metal compounds are even more toxic because of their bioaccumulation potentials associated with a high lipid solubility. Furthermore, owing to their persistence and semi - volatility, they are widely distributed in the environment, traveling great distances on wind and water currents. Recent international cooperation to address POPs and heavy metals has focused on these issues. Long -range transport of those pollutants are particularly concerned since Korea is located downwind of prevailing westerlies from China. In this paper, a review is provided to assess the properties, sources, emissions, and atmospheric concentrations on POPs and heavy metals.

A Study on Treatment Efficiency of Toluene and CO2 using Vortex Cyclones (보텍스 사이클론을 이용한 Toluene과 CO2 처리효율에 관한 연구)

  • 임계규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.493-501
    • /
    • 2004
  • The principle of vortex tube and cyclone was introduced to enhance the treatment efficiency of waste air streams containing particulate matters, toluene, and others developed by Hangreen Tech, Ltd. and Hoseo Chemical and Industrial Technology R&D Center. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by vortex tube and Joule-Thomson expansion. The pressurized air was introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube. Easily condensible vapors such as toluene. carbon dioxide, and water vapor were adsorbed enforcedly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves. These types of coagulation or condensation rates were rapidly promoted as the diameter being growing up. The maximum removal efficiency for carbon dioxide and toluene was achieved to about 87 and 90 percent, respectively. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 30%. An optimum value was observed within the range of the tested temperatures at a fixed pressure. In conclusion. it could be identified that the treatment efficiency would be depended on the pressure of the process air introduced and physical and chemical characteristics of waste air streams containing target materials for a designed system. The final design parameters should be decided depending upon the given system and target materials.

Mathematical Model Simulations Assessing the Effects of Temperature on Residual Chlorine Concentrations in Water Storage Tanks (온도 변화에 따른 수돗물 저장 저수조 내 잔류염소에 관한 수학적 모형 시뮬레이션)

  • Noh, Yoorae;Park, Joonhong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • To ensure hygienic safety of drinking water in a water storage tank, the concentrations of residual chlorine should be above a certain regulation level. In this study, we conducted model simulations to investigate the effects of temperature on residual chlorine in water storage tank conditions typically used in Seoul. For this, values of model parameters (decomposition rate constant, sorption coefficient, and evaporation mass transfer coefficient) were experimentally determined from laboratory experiments. The model simulations under continuous flow conditions showed that the residual chlorine concentrations were satisfied the water quality standard level (0.1 mg/L) at all the temperature conditions ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$). Meanwhile, when the tanks had a no flow condition (i.e., no tap-water influent due to a sudden shut-down), the concentrations became lower than the regulatory level after certain periods. The findings from this modeling works simulating Seoul's water storage tanks suggested disappearance rate of residual chlorine could be reduced through the tanks design optimization with maintenance of low water temperature, minimization of air flow and volume, suppression of dispersion and the use of wall materials with low sorption ability.

Performance Tests on a Solar Water Heating System in Thermosyphonic Flow (열사이폰식 태양열 온수시스템의 성능실험)

  • Kim, Doo-Chun;Park, Seung-Duk
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1980
  • A small domestic solar water heating system in thermosyphonic flow was tested in Seoul. The system consisted of four flat plate aluminium roll bond type collectors of total effective area $3.28m^2$ and a $280{\iota}$ storage tank. It was tilted $52^{\circ}$ relative to the horizon. And the collector plate, collector tube and storage tank were equiped with 14 thermocouples. As the results, the following facts were found; 1) To provide water at $55^{\circ}C$ for a family of four in Seoul, a collector area of $3-4m^2$ and a storage capacity of $180{\iota}- 200{\iota}$ are suggested. And this system can supply hot water at above $45^{\circ}C$ day about. 2) In the late afternoon hours, it might be advantageous to stop the flow in the system as heat losses to the environment increase unduly. 3) Without any hot water consumption throughout the day, water temperature distributions inside the storage tank was found almost linear. This indicates essentially no mixing inside the storage tank. 4) In case of a small domestic solar water heating system, it is better to employ a single transparent cover rather than double one.

  • PDF

Assessing the Effect of Water and Heat Cycle of Green Roof System using Distributed Hydrological Model in Urban Area (분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Kim, Yeon Mee;Nam, Mi A
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2013
  • The impervious area on the surface of urban area has been increased as buildings and artificial land cover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural ecosystem. There arise the environmental problems to urban area including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate flood discharge and heat reduction effect according to the green roof system and to quantify effect by analyzing through simulation water and heat cycle before and after green roof system. For the analysis, Distributed hydrologic model, WEP (Water and Energy transfer Processes) and WEP+ model were used. WEP was developed by Dr. Jia, the Public Works Research Institute in Japan (Jia et al., 2005), which can simulate water and heat cycle of an urban area with complex land uses including calculation of spatial and temporal distributions of water and heat cycle components. The WEP+ is a visualization and analysis system for the WEP model developed by Korea Institute of Construction Technology (KICT).

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF