• Title/Summary/Keyword: Air Vent

Search Result 162, Processing Time 0.025 seconds

Flow Analysis of the Air Pocket in Draw Die (드로우 금형의 에어포켓 유출 유동해석)

  • Hwang, Se-Joon;Park, Warn-Gyu;Kim, Chul;Oh, Se-Wook;Cho, Nam-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • In sheet metal forming process using press and draw die some defect can be made because of the high pressure of air pocket between draw die and the product. The purpose of this study is to develop a program to decide an optimal combination of air vent hole size and number to prevent those defect on product. The air inside air pocket is considered as ideal gas and the compression and expansion is assumed as isentropic process. The mass flow is computed in two flow condition: unchocked and chocked condition. The present computation obtains required cross-sectional area of air vent hole for not exceeding the user specified pressure such as the pressure for yielding strength of the product or the pressure for unchocked flow. To validate the program the present results are compared with the results of other researchers and commercial CFD code.

  • PDF

The Evaluation of Thermal Performance of Double Vent Window System (Double Vent 창호 시스템의 단열성능평가)

  • Ryu, Seung-Ho;Park, Jin-Woo;Moon, Hyeun-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.557-560
    • /
    • 2008
  • Window system is an essential component for ventilation, lighting, and thermal environment in buildings. However, window system has the lowest insulation performance and may cause high energy consumptions, if it is not properly designed. Thus, performance of window systems play an important role in built environment. This study proposes a new window systems for balcony, which has double vents and analyses the thermal performance using an intergrated simulation method with Therm 6.1 and Widow 6.1. The result shows higher U-factor than conventional window systems. It is expected that the double vent window system can increase thermal performance and save energy in apartment houses.

  • PDF

A Study on the Pressure Change during the Pressurization to the Elevator Lobby (부속실 급기가압 시 압력특성 변화에 관한 연구)

  • Kim, Beom-Kyue;Park, Yong-Hwan;Kim, Hong-Sik
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.99-104
    • /
    • 2012
  • This study investigated the pressure change in the fire room and elevator lobby during the air pressurization to the Elevator lobby with the various egress scenarios and the existence of vent holes in the fire room. The experiments revealed that pressure change was significantly affected by the open/closure scenarios of the front door and stairway door resulting in over pressure, under pressure and performance drop of the door closure. It also revealed that the required smoke defensive air velocity can be obtained only with the existence of vent holes in the fire room by the removal of back pressure in the fire room.

Analysis of Air Current Measurements at External Induction-Style Kitchen and Bathroom Vents (외기유인형 주방·욕실 배기구의 기류측정 분석)

  • Lee, Yong-Ho;Kim, Seong-Yong;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.76-84
    • /
    • 2012
  • This study conducted experiments to measure air currents in an experimental building according to external conditions, types of induction ducts, and types of internal sockets by applying an external induction duct comprised of inducing openings and lines and induction units to the kitchen and bathroom vents at the rooftop of a super high-rise apartment building in order to help to improve the venting performance. The study also proposed the optimization of the external induction-style kitchen and bathroom vents capable of wind power generation. (1) As for air current distribution according to vent velocity changes, it increased the venting performance of the kitchen and bathroom by 1.0m/s at vent velocity of 2.0m/s or higher and allowed for wind power generation. (2)As for air current distribution according to external velocity changes, it increased the venting performance of the kitchen and bathroom by 1.2m/s at external velocity of 2.0m/s or higher and allowed for wind power generation. (3)As for air current distribution according to wind direction changes($0{\sim}180^{\circ}$), it was favorable for higher vent velocity when the angle between the external induction duct direction and prevailing wind direction was within ${\pm}30^{\circ}$. (4)As for air current distribution according to induction duct type, the[M1] type combining the inducing openings and lines with the induction units recorded the highest improvement effects in the kitchen and bathroom venting performance by increasing vent velocity by 46%. (5)As for air current distribution according to the changing types of internal sockets where the main ducts of the kitchen and bathroom are connected to the external induction ducts, the venturi tube type[Sv] increased vent velocity by 66% based on the smoothest external inflow.

A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation (박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Cheong, Jae-Woan;Choi, Gyeong Lee
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

Experimental Investigations on Air Entrainment Through an Air Vent Installed on a Gated Conduit of a Reservoir (저수지 취수시설의 공기관을 통한 공기연행에 대한 실험적 연구)

  • Kang, Min Goo;Park, Young Jin;Kim, Ji Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.149-155
    • /
    • 2013
  • In this study, factors that affect the air entrainment within a closed conduit by air drawn in through an air vent are investigated using a hydraulic scale model, which represents a gated circular conduit system connected to the intake tower of an irrigation reservoir. In addition, using data obtained during the hydraulic experiments, experimental equations are developed to estimate the amount of air drawn in through the air vent. In case of pressurized flow conditions downstream of hydraulic jumps, the relationships between $\frac{Q_a}{Q_w}$ and $Fr_g-1$ of the data form a experimental equation, $\frac{Q_a}{Q_w}=0.0304(Fr_g-1)^{1.0622}$; in case of free surface flow conditions, $\frac{Q_a}{Q_w}=0.0271(Fr_g-1)^{1.8205}$. Comparing two data sets observed under the two flow regimes with the results of previous researchers, patterns of the data sets are similar to the results estimated using the equations presented previously, and this indicates that the quality of the data obtained during the hydraulic experiments is ensured. In addition, it is revealed that air entrainment phenomena in the regions close to air vents are affected by the characteristics of supercritical flows downstream of gates. Finally, it is concluded that the equation developed for pressurized flow conditions can be applied to design of air vents.

Effect of Evacuation Variables on Pressure Change in the Die Cavity (다이캐스팅 금형 공간 내의 감압도에 미치는 제 변수의 영향)

  • Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.181-187
    • /
    • 2000
  • There are two types of vacuum die casting, one is known as the chill block method, and the other is the valve block method. Efficiency of the valve block method is better than the chill block method. However purchasing and maintaining cost of the former one is very high, the latter method is popular in many small and medium die casting shops. Simple evacuation system using chill vent was prepared to investigate the effect of the air pressure, hose length and chill vent type on the pressure change in die cavity in this study. The rate of evacuation was influenced by the evacuation method, chill vent condition and hose length. Evacuation time became longer and vacuum level lower when evacuating cavity via chill vent. It took a longer time to evacuate the cavity when a longer hose was used. Vacuum level in the cavity also decreased with increase in hose length.

  • PDF

Cooling Characteristics of Fruits and Vegetables for Pressure Cooling (차압통풍 예냉 청과물의 냉각특성)

  • 윤홍선;박경규
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.237-243
    • /
    • 1997
  • Numerous variables affect product cooling rate of pressure cooling system for fruits and vegetables. These include carton vent area, initial and desired final product temperature, flow rate and temperature of the cooling air, product size, shape and thermal properties and product configuration(whether in bulk or packed in shipping cartons). This study was carried out to determine the influence of each of these variables as they affect cooling time. The opening ratio and number of the vent hole were recomended as 4∼10% and 2∼4ea., respectively, for a minimum alt flow resistance and for a uniform air flow pattern. In the cooling experiment for tomatoes and mandarins, optimum air flow rate was 0.04 m3/min.kg in terms of energy saving. The cooling air temperature should be about 2$^{\circ}C$ less than the desired final product temperature for reducing cooling time.

  • PDF