• Title/Summary/Keyword: Air Velocity

Search Result 2,860, Processing Time 0.036 seconds

The effect of air velocity on the thermal resistance of wool ensembles (풍속변화에 따른 순모의류의 온열특성)

  • 송민규;전병익
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF

Blow-off and Combustion Characteristics of a Lifted Coaxial Diffusion Flame (동축 확산 부상화염의 Blow-off와 연소 특성)

  • Kwark, Ji-Hyun;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1089-1096
    • /
    • 2003
  • An experiment was performed to investigate lift-off, blow-off and combustion characteristics of a lifted coaxial diffusion flame according to fuel jet and air velocity. A jet diffusion flame which is attached on the nozzle rim begins to be lifted with increase of air velocity, and finally becomes blow-off at higher air velocity. In experiment, blow-off limit increased with increase of fuel jet velocity, however lift-off occurred at lower air velocity. Flame structure and combustion characteristics were examined by schlieren photos, temperature distributions and emission concentration distributions. Flame temperature became higher at midstream and its RMS became larger at up and downstream with increase of air velocity. Local NO concentration decreased but $CO_2$concentration increased with increase of air velocity, which shows combustion reaction becomes close to be stoichiometric at higher air velocity in spite of lift-off.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition (착상 시 공기 유속이 슬릿 핀-관 열교환기 서리층 생성에 미치는 영향에 관한 연구)

  • Shin, Sung-Hong;Cho, Keum-Nam;Hayase, Gaku
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.252-257
    • /
    • 2007
  • The present study investigated the effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition. The slit fin-and-tube heat exchanger with outer tube diameter 7.0mm and 1 row was used. Air side pressure drop, photographs of frost distribution, frost accumulation and frost thickness were presented with respect to the frosting time. In the early stage of experiment, the case with air velocity of 1.5m/s showed 403% higher for the air pressure drop than the case with the air velocity of 0.5m/s. As the frost was accumulated, the effect of air velocity on air pressure drop was decreased. In the end stage of test, air pressure drops of two cases were very close and air pressure drop for the air velocity of 0.5m/s was higher than that of 2.0m/s. It was also shown in the photographs of frost distribution, frost accumulation and frost thickness. From frost thickness, fanning friction factor was presented.

  • PDF

Effects of Air Blast Thawing Combined with Infrared Radiation on Physical Properties of Pork

  • Hong, Geun-Pyo;Shim, Kook-Bo;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.302-309
    • /
    • 2009
  • This study investigated the effects of infrared (IR) radiation combined with air blast thawing on the physical properties of pork. Regardless of air velocity, increasing IR dosage produced an exponential increase in the thawing rate of pork. This rate increased further when air blast velocity was increased. IR treatments showed significantly lower thawing loss than that of 0 Watt treatment, while increasing air velocity significantly increased thawing loss of pork (p<0.05). Increasing both IR power and air velocity tended to decrease the cooking loss of pork. Moreover, increased IR power tended to decrease the water holding capacity and shear force of pork. The shear force changes were not significant (p>0.05). Shear force also increased with increasing air velocity. In addition, the higher the air velocity the higher the shear force of pork. In Commission Internationale de l'Eclairage (CIE) colour determination, control of temperature prevented discolouration from overheating of sample surface. The results suggest that IR dosage combined with air blast has potential in thawed meat quality aspects, and that humidity control could prevent surface drying.

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort by Indoor Air Temperature and Velocity - (대류난방시 실내열환경에 관한 연구 - 온도 및 기류속도에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Chung Yong-Hyun
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.209-214
    • /
    • 2005
  • Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

Study on the Optimal Velocity of Horizontal Air Jet of a Range hood system (주방용 후드 수평급기의 최적속도 결정에 관한 연구)

  • Kim, Sang-Gyu;Park, Sung-Geun;Yong, Ho-Taek;Kim, Dong-Yoon;Choi, Hyoung-Gwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.63-68
    • /
    • 2005
  • In the present paper, the study on the optimal horizontal air jet velocity of a range hood system has been studied by three dimensional numerical simulation. It has been shown that the air jet of a range flood system generates coanda effect confining the contaminated (high temperature) air in a certain region while the jet pushes out more contaminated air into a room as the jet velocity increases. Therefore, the optimal jet velocity has been determined by the combination of the two mechanism.

  • PDF

NUMERICAL STUDY ON THE EFFECT OF EXTERNAL AIR VELOCITY AND DIRECTION ON FLAME SPREAD IN HIGH RISE BUILDING WITH THE ALUMINUM COMPOSITE EXTERNAL MATERIALS (알루미늄 복합 외장재를 사용한 고층 건축물의 외기 풍속, 풍향 변화가 화염전파에 미치는 영향에 대한 수치해석 연구)

  • Kim, H.J;Bae, S.Y.;Choi, Y.K.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.225-229
    • /
    • 2011
  • The aluminum composite panel are widely used for the external materials of high rise building because of well insulation of heat and sound and improved Constructability. However, the polyethylene in main material of the aluminum composite panel shows weakness in thermal and fire resistances. For this reason, flame is spread more quickly when the fire break out. Therefore, the potentiality of fire spread to the exterior wall is high due to difficulty of early extinguishment and effect of external air. In this study, numerical investigation was performed by using FDS program for flame spread characteristics with various external air velocity and direction in ten-story building with the aluminum composite external materials. As a result, the flame spread velocity is 0.134m/s and it takes 224 seconds for flames to spread to the 10th floor without external air velocity. however, the flame spread velocity decreases 40% and it takes 348 seconds for flames to spread to the 10th floor when external air velocity is 2.5 m/s. and air direction is little effect compared to air velocity.

  • PDF