• Title/Summary/Keyword: Air Turbo Ramjet

Search Result 9, Processing Time 0.022 seconds

Performance Analysis of Air Turbo Ramjet using $H_2$ and $CH_4$ (수소와 메탄 연료를 사용한 에어 터보 램제트 엔진의 성능해석)

  • 이양지;차봉준;양수석;이대성;김형진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-110
    • /
    • 2003
  • The present work was conducted to achieve the better understanding of the performance analysis technique for the expander type air turbo ramjet engine. For this purpose, the performance analysis was carried out using a small engine(8.0kN thrust) with two types of fuels. From this analysis, at the same input condition, the thrust of methane-fueled engine was 25% lower than that of hydrogen. In addition, the case of methane shows the inapplicable engine performance cycle.(i.e., The compressor work exceeds the turbine output power) These results come mainly from the different heating value of each fuel and specific heat. This analysis also shows that, to build a same performance cycle as the hydrogen case, the methane-fueled engine requires increased air and fuel flow rates, increased turbine expansion ratio, and decreased compressor pressure ratio.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF

Subsonic Performance Analysis of Air Turbo-Ramjet Engine (에어터보램제트 엔진의 아음속 성능 해석)

  • Lee Yangji;Yang Sooseok;Yang Inyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.62-67
    • /
    • 2004
  • This paper investigates the off-design performance of methane-fueled air turbo ramjet(ATR) engine in subsonic flight speed range. The ATR engine was modeled and simulated numerically. Each component was modeled to enable their off-design calculation. Compressor operating point was determined by flow matching with nozzle, and turbine by work matching. The ATR engine exhibited quite different off-design behavior compared to the conventional gas turbine engine.

  • PDF

Preliminary Design of Movable Air-Turbo Ramjet Engine Intake

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok;Lee, Dae-Sung;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.480-485
    • /
    • 2008
  • In this study, two types of ramjet intake were designed for the flight condition of Mach number 2 and 5 and numerical analysis was performed. In order to widen the flight envelope range(Mach number $2{\sim}6$), movable intake concept was applied. The central body was designed so that the capture area ratio which is one of most important factors of ramjet intake design could be adjusted. And various types of cowl and movable insert part of shell were designed in order to control throat area which could increase total pressure recovery. The numerical results showed that the designed ramjet intake could be applied in various flights Mach number.

  • PDF

Performance Characteristics of Hydrogen Peroxide Mono Propellant PDE (Pulse Detonation Engine) (과산화수소 단일 추진제 PDE의 성능 특성에 관한 수치적 연구)

  • Cho, Heung-Sik;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.153-157
    • /
    • 2003
  • Supersonic and hypersonic aircrafts must pass wide range of speed to reach high speed region. But for existing engines the most efficient operating speed ranges are decided according to their flying speed, so an engine which mixes several engines like TRJ (Turbo Ramjet) and ARJ (Air Turbo Ramjet) has been planed. This mixed type engine has inefficiency that more than two engines must be installed simultaneously, but the pulse detonation engine (PDE) that uses detonation wave has a strong point that it can operate in all speed range with single engine. This paper deals with the simulation of the pulse detonation engine which uses hydrogen peroxide $(H_2O_2)$ mono propellant. Hydrogen peroxide is low-cost propellant, and it is reacted without oxidizer. Comparison between $H_2-O_2$ mixture with $H_2O_2$ mono propellant about thrust, pressure, temperature and velocity shows that $H_2O_2$ is a very useful propellant.

  • PDF

Measurement of the fuel distribution in a scaled ATR combustor using PLIF (PLIF를 이용한 ATR 연소기 축소모형의 연료분포 측정연구)

  • Jin Yu-In;Yang In-Young;Choi Young-Hwan;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-65
    • /
    • 2005
  • Mixing performance between fuel and oxidizer is a significant parameter of combustion efficiency and stability in an air-turbo ramjet combustor. Two types of petal mixer were experimented to research the mixing performance. Mixing performance and fuel distribution images were obtained for petal mixers. Planar laser-induced fluorescence(PLIF) was used to obtain 2-D fuel distribution. The obtained images were processed in order to make use of the image information to a quantitative level. The results of analyzing the fluorescence images could be useful to find better mixing performance between mixers.

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF

에어터보램제트 엔진의 탈설계점 성능해석

  • Yang, In-Young;Lee, Yang-Ji;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.27-35
    • /
    • 2005
  • In this study, a performance analysis code was developed for the off-design performance analysis of air turbo ramjet(ATR) engine, and the analyses were performed for the pre-designed ATR engine at several operating points in the envelope. Variable intake and thrust nozzle were assumed to cover the wide envelope. Mathematical models for each components were developed to calculate their off-design performance. Simple design formulas were introduced for some components to explore the performance variation versus the design parameters. As a result, the pre-defined engine couldn't cover the entire mission profile. And it was also found that the effect of the pre-cooler was not very great, especially in the region of low Mach number.

  • PDF

Fuel Distribution Measurements in ATR Combustor using PLIF (PLIF를 이용한 ATR 연소기 내부의 연료분포 측정)

  • Yang In-Young;Jin You-In;Yang Soo-Seok;Park Seung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.274-277
    • /
    • 2004
  • Fuel/air mixing in air turbo ramjet(ATR) combustor is a significant parameter of combustion stability and efficiency. In this study, fuel distribution in the ATR model combustor was measured to compare the degree of mixing with respect to the velocity ratio$(r=v_a/v_f)$ between fuel gas and air. Planar laser-induced fluorescence(PLIF) and image processing method were used to obtain two dimensional fuel distribution. Fuel mixing went bad with approaching to r=1.

  • PDF