• 제목/요약/키워드: Air Temperature

검색결과 10,359건 처리시간 0.042초

대류난방시 실내열환경에 관한 연구 - 온도 및 기류속도에 대한 온열쾌적감- (The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort by Indoor Air Temperature and Velocity -)

  • 김동규;정용현
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.209-214
    • /
    • 2005
  • Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.

가정용 흡수식 냉온수기용 냉각탑의 성능특성 (Performance Characteristics of Cooling Tower on Small Absorption Chiller)

  • ;김은필;정석권;민경현;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1145-1151
    • /
    • 2004
  • The experiment of thermal performance about cross flow type cooling tower was conducted in this study. Generally the ambient air condition can affect the thermal performance of cooling tower to improve or not. However it is hard to control the cooling water temperature that we want under bad air condition or during rainy season. In this paper, the effect of variables, which the ambient air have. especially wet-bulb temperature, are experimentally investigated for controlling the cooling water temperature more successfully. The result is that there is appropriate air flow rate in respective air condition to preserve the cooling performance in the cooling tower and the maximum air flow rate can't overcome the approach under bad air condition.

공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법 (Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber)

  • 정은수
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구 (Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type)

  • 이권재;권영철;전종균;박삼진;권정태;허철
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

도시녹지의 기온 및 지온 완화효과에 관한 연구 (A Study on the Effect of Air Temperature and Ground Temperature Mitigation from Several Arrangements of Urban Green)

  • 이은엽;문석기;심상렬
    • 한국조경학회지
    • /
    • 제24권1호
    • /
    • pp.65-78
    • /
    • 1996
  • To study the temperature mitigation effects from urban green, several arrangements of green spaces were selected and air/ground temperatures were measured in Chongju city area. The results of this study can be summarized as follows; 1. It was found that the natural ground materials effect more affirmatively on the air and ground temperature than artificial ones do. The best results were recorded from the grass surface presenting highest mitigation effect and lowest daily temperature deviation. 2. Temperature mitigation effects of Tree-Shade on ground are different from season, ground material, and crown-size. Them most effects were found in interlocking block, the least in grass surface among recorded 2 seasons and 3 materials. In case of air temperature, the effects were more or less decreased in most cases. 3. From the survey, it was confirmed that the smaller urban greens can do its role of temperature mitigation as larger ones does. In case of this study, the effect was recorded about 2.3$^{\circ}C$.

  • PDF

기체온도 측정을 위한 초음파 계측에 관한 연구 (A Study on Ultrasonic Technique for Measuring Gas Temperature)

  • 윤천한;최영;전흥신
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

조간대에서 조위에 따른 기온과 수온 변화 : 여수 오도섬 (Variations in Air Temperature and Water Temperature with Tide at the Intertidal Zone : Odo Island, Yeosu)

  • 조원기;강동환;김병우
    • 한국환경과학회지
    • /
    • 제31권12호
    • /
    • pp.1027-1038
    • /
    • 2022
  • The intertidal zone has both land and marine characteristics and shows complex weather environments. These characteristics are suited for studying climate change, energy balance and ecosystems, and may play an important role in coastal and marine weather prediction and analysis. This study was conducted at Odo Island, approximately 300m from the mainland in Yeosu. We built a weather observation system capable of real-time monitoring on the mud flat in the intertidal zone and measured actual weather and marine data. Weather observation was conducted from April to June 2022. The results showed changes in air temperature and water temperature with changes in the tide level during spring. Correlation analysis revealed characteristic changes in air temperature and water temperature during the day and night, and with inundation and exposure.

수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구 (Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area)

  • 정주희;김유근;문윤섭;황미경
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.

한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증 (Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea)

  • 한보름;임유나;김혜진;손석우
    • 대기
    • /
    • 제28권2호
    • /
    • pp.153-162
    • /
    • 2018
  • The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

철도 전동차내의 쾌적성 평가에 관한 연구 - 온도 및 습도를 중심으로 - (Evaluation of Comfortableness in Railroad Electric Rolling Stock - Focused on Temperature and Humidity -)

  • 박덕신;배상호;정병철;이주열
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.41-48
    • /
    • 2003
  • Most of people spends their times in indoor about 85% of a day. Thus, indoor is more serious than outdoor concerned with the health. We discussed comfortableness in a railroad electric rolling stock, and focused on temperature and humidity. Electric rolling stock is one of major public transportation system because of an increasing in population and heavy traffic problems. The passengers are under the influence of indoor air quality such as air temperature, relative humidity and air velocity. Ventilation system in electric rolling stock should be designed for the health and comfort. One of the main aims is to create an acceptable thermal environment without draught problem. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in electric rolling stork is turbulent. Temperature and humidity gradients in electric rolling stock have been studied. And, the difference between mean temperature and rotative humidity measured at 0.7, 0.9, 1.2, 1.7m above the floor. It has been found that temperature and relative humidity with large fluctuations caused more draught complaints.