• Title/Summary/Keyword: Air Temperature

Search Result 10,390, Processing Time 0.038 seconds

Graft-taking and Growth Characteristics of Grafted Cucumber(Cucumis sativus L.) Seedlings as Affected by Light Quality and Blink Cycle of LED Modules (LED 모듈의 광질 및 점멸주기에 따른 오이접목묘의 활착 및 생장 특성)

  • Kim, Hyeong Gon;Choi, Yu Hwa;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • This study was conducted to investigate the graft-taking and growth of grafted cucumber seedlings as affected by light quality and blink cycle of LED modules. Four light quality treatments, namely blue, red, blue+red, white LED and four blink cycle levels of 5s/5s, 7s/3s, 9s/1s and control were provided to investigate the effect of lighting quality and blink cycle on the graft-taking and growth of grafted cucumber seedlings. Photoperiod for the control was 12/12 h. Photosynthetic photon flux, air temperature, and relative humidity for healing were maintained at $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $25^{\circ}C$, and 90%, respectively. There was no significant difference in graft-taking of grafted cucumber seedlings according to light quality except the blue LED with the blink cycle of 5s/5s. Regardless of the blink cycle, there was no significant difference in graft-taking of cucumber seedlings healed under red, blue+red, and white LED modules. These results implied that the effects of light quality and blink cycle on the graft-taking were not significant. Differences in the leaf length, leaf area, and fresh weight of cucumber seedlings healed blue or red LED with the blink cycle of 9s/1s were found to be significant. There was no significant effect of the blink cycle on the growth of cucumber seedlings healed under white LED modules. The prices of white LED are gradually falling due to increased demand. Considering the manufacturing unit price of white LED modules, the cost savings of 10-15% are expected as compared to the conventional blue/red LED modules. Therefore, it was concluded that the use of white LED modules will be economical as an artificial lighting sources for healing of grafted seedlings.

Effect of Holding Solution on Vase Life of a New Ornamental Crop Known as Euphorbia jolkinii Boiss. (보존용액 처리가 신 관상식물 암대극(Euphorbia jolkinii Boiss.)의 절화수명에 미치는 영향)

  • Song, Su Jung;Park, Hyung Bin;Kim, Ji Sun;Oh, Hye Jin;Kim, Sang Yong;Jeong, Mi Jin;Lee, Seung Youn
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.312-317
    • /
    • 2019
  • This study was conducted with the purpose of examining the suitability of Euphorbia jolkinii Boiss. as cut flower, so that it may be introduced as a new ornamental crop. For this purpose, effect of various holding solutions on vase solution uptake rate, vase life, and relative fresh weight of cut flowering branches of E. jolkinii was examined. After harvest, cut branches were treated with 10, 50, and $100mg{\cdot}L^{-1}$ of 8-hydroxyquinoline sulfate (8-HQS), 0.1 and 0.2 mM of silver thiosulfate (STS), Chrysal, and Floralife. The cut branches of E. jolkinii were placed under the environmental conditions maintained at air temperature of $22.6^{\circ}C$, relative humidity of 45%, and 9/15h photoperiod that was controlled using fluorescent lamps (light intensity of $9.89{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). A holding solution containing $10mg{\cdot}L^{-1}$ 8-HQS was found to be significantly effective for vase solution uptake rate compared to control, $50mg{\cdot}L^{-1}$ 8-HQS, and $100mg{\cdot}L^{-1}$ 8-HQS treatments. However, no significant difference was found in vase life between the branches treated with $10mg{\cdot}L^{-1}$ 8-HQS holding solution and branches of the control group. Increasing holding solution concentrations of STS was found to have negative effect on the vase life of cut E. jolkinii branches. Relative fresh weight of cut E. jolkinii branches were significantly decreased by two commercial holding solutions, Chrysal and Floralife. It is expected that these results would aid further studies on utilization of E. jolkinii as cut flower crop.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste (가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성)

  • Do, Ji-Young;Kim, Dong-Su;Park, Kyung-Chul;Park, Sam-Bae;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.13-22
    • /
    • 2022
  • In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Effect of Soil Strength on Seedling Emergence of Rice and Barnyardgrasses in Direct Dry-Seeding (건답직파에서 토양경도가 벼와 피의 출아에 미치는 영향)

  • Kwon, Yong-Woong;Lee, Byun-Woo;Kim, Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.489-495
    • /
    • 1996
  • Seedling emergences of four rice varieties (Dongjinbyeo, Dadajo, Galsaekggarak-sharebyeo, and Italiconaverneco) and three barnyardgrass species(Echjnochloa oryzjcola, E. crus-gali var. crus gali E. crus-gali var. praticola) were evaluated in relation to soil strength. Soil strength was varied by compressing the entire volume of soil with a hydraulic jack so as to be 0.5, 1, 2, 3, 6kg /$\textrm{cm}^2$. Soil strength was measured with a penetrometer (Yamanaka type) and soil covering above the seed was 4cm deep. Experiments were conducted at two air temperature conditions of 17 and $25^{\circ}C$. At a soil strength of up to 2kg/$\textrm{cm}^2$, little or no decrease in seedling emergence occurred in all rice varieties and barnyardgrasses tested. Above that value, seedling emergence decreased progressively as the soil strength increased. The degree of decrease was greatest in Dongjinbyeo and smallest in Dadajo among tested rice varieties, and greatest in Echinochloa oryzicola among barnyardgrasses, being greater in barnyardgrasses than rice. Seedling emergence was delayed almost linearly as the soil strength increased. The delay was greatest in Dongjinbyeo among rice varieties and in Echinochloa oryzicola among barnyardgrasses. Mesocotyl length increased as soil strength increased up to 2 to 3kg / $\textrm{cm}^2$ in Dongjinbyeo and Dadajo in 17$^{\circ}C$ and $25^{\circ}C$, and up to 6kg/$\textrm{cm}^2$ in Galsaekggaraksharebyeo and Italiconaverneco in $25^{\circ}C$. Dongjinbyeo showed the least elongation of mesocotyl among rice varieties in any soil strength. The total length of mesotyl, first internode and incomplete leaf showed little variation with soil strength. The total length was longer than the 4cm covering depth in other varieties except Dongjinbyeo. This might have caused the lower emergence rate in Dongjinbyeo than other varieties in higher soil strength.

  • PDF

Effects of Soil Crusting and Hardening during Drying after Artificial Rainfall on Seedling Emergence of Rice and Barnyardgrass (강우처리후 토양건조에 따른 피막형성 및 경도변화가 벼와 피의 출아에 미치는 영향)

  • Lee, Byun-Woo;Kwon, Yong-Woong;Myung, Eul-Jae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • Soil crusting and hardening as a result of drying after rainfall were examined in relation to seedling emergence by employing five rice varieties (Italiconaverneco, Dadazo, and Galsaekggarakshare, Dongjinbyeo and Sumjinbyeo) and two barnyardgrass species (E. crus-gallj var. oryzjcola and E. crus-galli var. praticola). Sandy loam, loam, and silty loam soils were used. The artificial rainfall of 0, 20 and 40mm were applied after sowing and covering with 4cm soil. Air temperature and solar radiation averaged over 9 days after seeding was 31.3$^{\circ}C$ and 16.9MJ /m$^2$, respectively. Soil strength increased rapidly by drying after artificial rainfall, being greater in soils with greater amount of clay and artificial rainfall. Soil crust was formed on the surface with artificial rainfall in all soils tested. However, soil crust was exfoliated in silty loam and loam soil, and lifted as seedlings emerge. Seedling emergence of rice varieties was decreased by rainfall treatments. Sumjinbyeo and Dongjinbyeo showed much poorer seedling emergence especially in sandy loam soil than the other varieties. Poor seedling emergence of these varieties might have been caused by delayed seedling emergence which had made them expose to greater soil strength. Seedling emergence of barnyardgrasses showed no differences among soil textures and rainfall treatments, because they emerged rapidly before soil crusting and hardening were proceeded enough to hamper seedling emergence. Seedling emergence of Sumjinbyeo and Dongjinbyeo decreased with increasing soil strength averaged over 3 days to 5 days after seeding, being lowered to 80% at soil strength of 1.0kg/cm$^2$ and to 50% at 1.7kg/cm$^2$. Emergence speed of barnyardgrasses was faster than rice varieties, and E. crus-galli var. oryzjcola than E. crus-galli var. praticola. Italiconaverneco and Dadazo showed faster emergence in rice varieties. Galsaekggarakshare showed slower emergence speed than these two varieties with similar seedling emergence percentage. The greater and faster elongations of mesocotyl and incomplete leaf in rice, and of mesocotyl in barnyardgrass were the characteristics responsible for higher seedling emergence rate in the environment examined.

  • PDF