• Title/Summary/Keyword: Air Supplying System

Search Result 101, Processing Time 0.031 seconds

Establishing Application System of KOMPSAT-1

  • Park, Gi-Hyuk;Lee, Joo-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.198-203
    • /
    • 1999
  • Korea Multi-Purpose Satellite-1 (KOMPSAT-1) is developed by the Korea Aerospace Research Institute (KARI) with the aid of TRW and will be launched on the Nov. 24, 1999 at the Vandenberg Air Base in CA, U.S, Now, the satellite application group in KARI is preparing for the service with the KOMPSAT-1 satellite data. For the purpose of supplying good service to the users, data application planning has to be established before launching satellite. To use satellite data effectively, KARI makes a plan for data policy, data price, mission planning, and commercializing strategy. This study was carried out with the purpose of effective use of satellite data. For this purpose, KARI makes a user group first. There are 58 user groups to use KOMPSAT-1 data for public welfare and research sectors. These user groups include government, public corporations, institutes, and universities. KARI will offer the service to users through online using Internet. Secondly, KARI makes a policy for the priority of KOMPSAT-1 missions. These are classified by the mission priority, payloads, and operational states etc. Thirdly, KARI will make data policy and data price of KOMPSAT- 1 based on the basic master 1)tan. Especially, data price will be determined at trte KOMPSAT-1 committee including Ministry of Science and Technology (MOST). KARI is also trying to commercialize the data with the domestic and foreign companies to expand the use of KOMPSAT-1 data in the industries sector. Afterward in this study, KARI will continue the improvement for the effective distribution of KOMPSAT-1 data for all users.

  • PDF

Performance Evaluation of Passengers' Evacuation for Smoke-Control Modes in a Subway Station Based on CFD Results (전산열유체 해석결과를 이용한 지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Jang, Yong-Jun;Lee, Han-Su;Chang, Hee-Chul;Lee, Duck-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.276-279
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by buildingEXODUS V 4.0.

  • PDF

Temperature Distribution Characteristics for Changes in Hot Water Flow in A Small Ocher Jjimjilbang (소형 황토 찜질방의 온수유량 변화에 대한 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.74-80
    • /
    • 2020
  • The ocher jjimjilbang for a single-person household that will be studied in this study is 2.1 ㎡ in size, and this study was conducted to implement well-being room heating that is beneficial to health by supplying radiant heat provided by hot water during room heating by embedding hot water panels in the walls of the ocher jjimjilbang to configure a hot water circulating system. In addition, the ocher bed and the ocher walls, which have been verified through many study findings and reference materials, were constructed so that the living life with a bed and the ocher jjimjilbang would be implemented simultaneously. As the mass flow rate of the hot water increased, the magnitude of the wall temperature rise thanks to the hot water increased, and as the flow rate of the hot water increased, the transfer rate of the heat transferred from the wall of the ocher jjimjilbang to the air inside the wall of the ocher jjimjilbang increased.

Simulation-based Optimum Allocation of a Resonator for Reducing the Blow Noise of a Turbocharger in a Diesel Engine (디젤 엔진에서의 터보 차저 Blow 소음 저감 위한 시뮬레이션 기반 공명기 위치 최적화)

  • Kang, Yong-Hun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • A diesel engine is equipped with a turbocharger for providing more power at a low engine speed region by supplying charge air to combustion chambers. The turbocharger makes it possible to satisfy stringent emission regulations and customers' demand of enjoying the fun to drive by increasing engine performance. However, the turbocharger has the disadvantage of making BPF(Blade Passing Frequency), hissing, surge, whistle, and blow noises. Among them, reducing the blow noise, a narrow-band noise(a general range : 1800~2000Hz), is possible by using a resonator that controls the narrow frequency band governing the resonance in the intake system. In this study, the optimum location of the resonator is found by employing Boost as a CAE(Computer Aided Engineering) tool and is confirmed by experiments of an engine dynamo test and a real vehicle test.

A Study on the Development of Bio-gas Engine Using Livestock Manure - Fundamental Design and Experimental Analysis on the Performance - (축분을 이용한 바이오가스 엔진 개발 - 기초설계 및 성능분석 -)

  • Paek Y.;Kim Y. J.;Kang G. C.;Ryou Y. S.;Cho K. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.354-359
    • /
    • 2005
  • This is a fundamental study to develop a bio-gas utilization technology using livestock manure. Especially, this study was carried out to develop an engine using bio-gas. A bio-gas engine was designed and manufactured by modification of a diesel engine of 3 cylinders powering 13.31 kW/2800 rpm, changing the fuel supplying system fit for bio-gas. The result showed that, when the Air/Fuel ratio was controlled with fixed spark timing, the power of biogas-fueled engine is about $10.6{\~}14.6\%$ lower then that of LNG-fueled engine because of low volumetric efficiency. The engine output and torque was $11.85{\~}13.3$ kW, $39.5{\~}40.8\;N{\cdot}m$, respectively at the engine speed of 2600 rpm. Bio-gas consumption rate was 260.20 g/kW/hr, 315.20 g/kW/hr in engine speed or 1000 rpm, 2800 rpm, respectively.

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Establishing Application System of KOMPSAT-1

  • Choi, Gi-Hyuk;Lee, Joo-Hee;Paik, Hong-Yul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • Korea Multi-Purpose Satellite-l (KOMPSAT-l) has been developed by the Korea Aerospace Research Institute (KARI) with the aid of TRW and will be launched on the December 21, 1999 at the Vandenberg Air Base in CA, U.S. Now, the satellite application group in KARI is preparing for the service with the KOMPSAT-l satellite data. For the purpose of supplying good service to the users, data application planning has to be established before launching satellite. To use satellite data effectively, KARI makes a plan for data policy, data price, mission planning, and commercializing strategy. This study was carried out with the purpose of effective use of satellite data. For this purpose, KARI, first, made 60 user groups to use KOMPSAT-l data for public welfare and research sectors. These user groups include government, public corporations, institutes, and universities. KARI will offer the service to users through online using Internet. Secondly, KARI made a policy for the priority of KOMPSAT-l missions. These are classified by the mission priority, payloads, and operational states etc. Thirdly, KARI will make data policy and data price of KOMPSAT-l based on the basic master plan. Especially, data price will be determined at the KOMPSAT-l committee including Ministry of Science and Technology (MOST). KARI is also trying to commercialize the data with the domestic and foreign companies to expand the use of KOMPSAT-l data in the industries sector. Afterward in this study, KARI will continue the improvement for the effective distribution of KOMPSAT-l data for all users.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Assessment of the Locations for Carbon Monoxide Monitoring Stations in Daegu according to Emission Distribution (배출량 분포에 따른 대구시 일산화탄소 측정망 위치의 적절성 평가)

  • Kim, Hyo-Jeong;Jo, Wan-Kuen
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.25-34
    • /
    • 2012
  • Air quality in Daegu area is lower compared to many other cities, since Daegu is a basin surrounded by mountains. Accordingly, the present study investigated the location of carbon monoxide(CO) monitoring stations for systematic CO pollution management on the basis of the CO emission distribution in Daegu area. In order to achieve this purpose, the location of CO monitoring stations, which can be used for the establishment of CO management, were assessed. Emission map in Daegu area was prepared using numerical map and Clean Air Policy Support System(CAPSS) data supplied by the M inistry of Environment. Average emissions were estimated by dividing emission sources into four subgroups(roadway, apartment, industry, and municipal incineration facility) according to legal division. The CO emission intensities were subdivided into 10, which a high number represents a high emission intensity, and the current monitoring stations were evaluated for the determination of their steps in CO emission intensities. As a result, additional installation of monitoring stations were suggested for the high CO emission areas rather than the low CO emission areas. A systematic CO management strategy would be established by the supplying various principle CO data when the CO monitoring stations are additionally installed at Kukwudong and other six sites on the basis of analyses of data obtained from 1999 to 2007.

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.